Question

In: Physics

An ink droplet with a mass of 1.2E-10 kg and a charge of -1.6E-13 C is...

An ink droplet with a mass of 1.2E-10 kg and a charge of -1.6E-13 C is moving horizontally at 17 m/s. It then passes between 2 deflection plates. The horizontal length L of these plates is 1.5 cm. There is a uniform electric field of magnitude 1.4E6 N/C, directed downward, between the plates. Everywhere else, the electric field is zero.
a. Calculate the magnitude and direction of the droplet’s acceleration between the plates. Ignore gravity.
b. Calculate the vertical deflection of the droplet when it reaches the end of the plates.

Solutions

Expert Solution

All the best


Related Solutions

An object with a charge of -3.2 ?C and a mass of 1.6×10?2 kg experiences an...
An object with a charge of -3.2 ?C and a mass of 1.6×10?2 kg experiences an upward electric force, due to a uniform electric field, equal in magnitude to its weight. A) Find the magnitude of the electric field. Answer: E = 4.9×104 N/C B) Find the direction of the electric field. Answer: Downward C ) If the electric charge on the object is doubled while its mass remains the same, find the direction and magnitude of its acceleration. Express...
A particle (mass = 6.7 x 10-27 kg, charge = 3.2 x 10-19 C) moves along...
A particle (mass = 6.7 x 10-27 kg, charge = 3.2 x 10-19 C) moves along the positive x axis with a speed of 4.1 x 105 m/s. It enters a region of uniform electric field parallel to its motion and comes to rest after moving 5.0 m into the field. What is the magnitude of the electric field (in N/C) ?
A very small object with mass 8.10×10−9 kg and positive charge 6.20×10−9 C is projected directly...
A very small object with mass 8.10×10−9 kg and positive charge 6.20×10−9 C is projected directly toward a very large insulating sheet of positive charge that has uniform surface charge density 5.90×10−8C/m2. The object is initially 0.590 m from the sheet. What initial speed must the object have in order for its closest distance of approach to the sheet to be 0.330 m ? An electron is released from rest at a distance of 0.530 m from a large insulating...
A package of mass 50 kg sits on an airless asteroid of mass 1.25 x 10^13...
A package of mass 50 kg sits on an airless asteroid of mass 1.25 x 10^13 kg and radius 1000 m. We want to launch the package straight up so that it reaches a maximum distance of 4000 m from the center of the asteroid, where it will be picked up by a waiting ship before it can fall back down. We have a powerful spring whose stiffness is 1000 N/m. How much must we compress the spring to release...
An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It...
An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It is accelerated from rest through a potential difference that has a value of 1.81 × 106 V and then enters a uniform magnetic field whose magnitude is 2.63 T. The α-particle moves perpendicular to the magnetic field at all times. What is (a) the speed of the α-particle, (b) the magnitude of the magnetic force on it, and (c) the radius of its circular...
An object with a charge of -3.2 μC and a mass of 4.5×10−2 kg experiences an...
An object with a charge of -3.2 μC and a mass of 4.5×10−2 kg experiences an upward electric force, due to a uniform electric field, equal in magnitude to its weight. Find the magnitude of the electric field. Express your answer using two significant figures. Find the direction of the electric field. If the electric charge on the object is doubled while its mass remains the same, find the direction and magnitude of its acceleration. Express your answer using three...
An object with a charge of -2.9 μC and a mass of 4.6×10−2 kg experiences an...
An object with a charge of -2.9 μC and a mass of 4.6×10−2 kg experiences an upward electric force, due to a uniform electric field, equal in magnitude to its weight. A. Find the magnitude of the electric field. B. Find the direction of the electric field. C. If the electric charge on the object is doubled while its mass remains the same, find the magnitude of its acceleration. D. If the electric charge on the object is doubled while...
An ice cube of mass 0.029 kg and temperature -13 ∘C is dropped into a styrofoam...
An ice cube of mass 0.029 kg and temperature -13 ∘C is dropped into a styrofoam cup containing water of mass 0.4 kg and temperature 20 ∘C. Calculate the final temperature in degrees celcius and give your answer to one decimal place. (For simplicity, we ignore here the temperature change of the cup.) The specific heat of ice is 2200 J/kg ∘C and the specific heat of water is 4186 J/kg ∘C. The latent heat of fusion of ice is...
A block with a mass of 12.5 g and a charge of +9.50 × 10-5 C...
A block with a mass of 12.5 g and a charge of +9.50 × 10-5 C is placed in an electric field with x component Ex = 3.30 × 103 N/C, y component Ey = -807 N/C, and z component Ez = 0. (a) What is the magnitude of the electrostatic force on the block and (b) what angle does that force make with the positive x direction? If the block is released from rest at the origin at time...
A block with a mass of 13.1 g and a charge of +5.38 × 10-5 C...
A block with a mass of 13.1 g and a charge of +5.38 × 10-5 C is placed in an electric field with x component Ex = 2.32 × 103 N/C, y component Ey = -856 N/C, and z component Ez = 0. (a) What is the magnitude of the electrostatic force on the block and (b) what angle does that force make with the positive x direction? If the block is released from rest at the origin at time...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT