In: Other
Use the Peng-Robinson equation of state to compute the specific volume, V (L/mol), for methane gas at 298 K and 40 atm. Report your answer with 2 significant figures.
For Methane
Critical temperature Tc = 190.4 K
Critical pressure Pc = 45.398 atm
Accentric factor w = 0.011
Temperature T = 298 K
Pressure P = 40 atm
Tr = T/Tc = 298/190.4 = 1.56513
Gas constant R = 0.0821 L-atm/mol·K
Calculate from the last equation
= [ 1 + (0.37464 + 1.54226*0.011 - 0.26992*0.011*0.011)*(1 - 1.565130.5)]2
= [1 + (0.391572) * (-0.25105)]2
= 0.813055
b = 0.0777961*0.0821*190.4/45.398
= 0.0267874
a = 0.457236*0.813055*0.0821*0.0821*190.4*190.4/45.398
= 2.000985
From the first equation
40 = [(0.0821*298)/(V - 0.0267874)] - [(2.000985)/(V2 + 2*V*0.0267874 - 0.0267874*0.0267874)]
40 = [(24.4658)/(V - 0.0267874)] - [(2.000985)/(V2 + V*0.0535748 - 0.0007175648)]
40*(V - 0.0267874)*(V2 + V*0.0535748 - 0.0007175648) = 24.4658*(V2 + V*0.0535748 - 0.0007175648) - 2.000985*(V - 0.0267874)
(40V - 1.071496)*(V2 + V*0.0535748 - 0.0007175648) = 24.4658V2 + 1.31075V - 0.0175558 - 2.000985V + 0.0536
40V3 + 2.142992V2 - 0.0007175648V - 1.071496V2 - 0.057405V + 0.00076887 = 24.4658V2 - 0.690235V + 0.0360442
40V3 - 23.394304V2 + 0.632112V - 0.03527533 = 0
This is a cubic equation so there will be three roots of this equation
V1 = 0.5594273
V2 = 0.01271 + i* 0.037612
V3 = 0.01271 - i* 0.037612
V2 and V3 are imaginary roots so it can't be the specific volumes
V1 = 0.56 L/mol is the correct answer