Question

In: Chemistry

A flexible container at an initial volume of 6.13 L contains 9.51 mol of gas. More...

A flexible container at an initial volume of 6.13 L contains 9.51 mol of gas. More gas is then added to the container until it reaches a final volume of 16.3 L. Assuming the pressure and temperature of the gas remain constant, calculate the number of moles of gas added to the container.

Solutions

Expert Solution

Ans. Avogadro’s Law, equal volume of all gases have equal number of moles, at constant pressure and temperature.

That is,            V1 / n1 = V2 / n2                P, T constant            - equation 1

Putting the values for initial and final conditions-

            6.13 L / 9.51 mol = 16.3 L / n2

            Or, n2 = 16.3 L / (6.13 L / 9.51 mol)

            Hence, n2 = 25.288 mol

Therefore, total (final) moles of gas after addition of new gases = 25.288 mol.

Now,

            Moles of gas added later = Final no. of moles – Initial no. of moles

                                                = 25.288 mol – 9.51 mol

                                                = 15.78 mol


Related Solutions

An ideal gas in a sealed container has an initial volume of 2.55 L. At constant...
An ideal gas in a sealed container has an initial volume of 2.55 L. At constant pressure, it is cooled to 20.00 °C where its final volume is 1.75 L. What was the initial temperature? A sample of xenon gas occupies a volume of 9.47 L at 403 K. If the pressure remains constant, at what temperature will this same xenon gas sample have a volume of 6.29 L?
1. The pressure of 5.85 L of an ideal gas in a flexible container is decreased...
1. The pressure of 5.85 L of an ideal gas in a flexible container is decreased to one-third of its original pressure, and its absolute temperature is decreased by one-half. What is the final volume of the gas? 2. A piece of sodium metal reacts completely with water as follows: 2Na(s) + 2H2O(l) → 2NaOH(aq) + H2(g) The hydrogen gas generated is collected over water at 27.0°C. The volume of the gas is 175 mL measured at 0.969 atm. Calculate...
A 10.77 mol sample of xenon gas is maintained in a 0.7572 L container at 300.2...
A 10.77 mol sample of xenon gas is maintained in a 0.7572 L container at 300.2 K. What is the pressure in atm calculated using the van der Waals' equation for Xegas under these conditions? For Xe, a = 4.194 L2atm/mol2 and b = 5.105×10-2 L/mol. According to the ideal gas law, a 0.9160 mol sample of oxygen gas in a 1.668 L container at 268.4 K should exert a pressure of 12.10 atm. By what percent does the pressure...
A 10.58 mol sample of xenon gas is maintained in a 0.8497 L container at 296.8...
A 10.58 mol sample of xenon gas is maintained in a 0.8497 L container at 296.8 K. What is the pressure in atm calculated using the van der Waals' equation for Xe gas under these conditions? For Xe, a = 4.194 L2atm/mol2 and b = 5.105×10-2 L/mol. According to the ideal gas law, a 0.9613 mol sample of nitrogen gas in a 1.181 L container at 273.6 K should exert a pressure of 18.27 atm. What is the percent difference...
1/ A 10.64 mol sample of xenon gas is maintained in a 0.8062 L container at...
1/ A 10.64 mol sample of xenon gas is maintained in a 0.8062 L container at 299.9 K. What is the pressure in atm calculated using the van der Waals' equation for Xe gas under these conditions? For Xe, a = 4.194 L2atm/mol2 and b = 5.105×10-2 L/mol. (......) atm 2/ According to the ideal gas law, a 0.9174 mol sample of krypton gas in a 1.363 L container at 267.1 K should exert a pressure of 14.75atm. What is...
A 10 L adiabatic container contains 0.1 mol of air, at a temperature of 250 K....
A 10 L adiabatic container contains 0.1 mol of air, at a temperature of 250 K. It is closed by a stopcock. Ambient air is at 300 K at a pressure of 1 bar. The stopcock is opened for a moment and a certain amount of air penetrates into the container. After thermal equilibrium is reached inside the container, the gas temperature is measured to be 350 K. 1) Assuming that the air behaves as an ideal gas, find the...
Consider a process that occurs at constant volume. The initial volume of gas is   1.50 L...
Consider a process that occurs at constant volume. The initial volume of gas is   1.50 L , the initial temperature of the gas is   30.0 °C , and the system is in equilibrium with an external pressure of 1.2 bar (given by the sum of a 1 bar atmospheric pressure and a 0.2 bar pressure due to a brick that rests on top of the piston). The gas is heated slowly until the temperature reaches  55.2 °C . Assume the gas...
A flexible balloon contains 0.360 mol of an unknown polyatomic gas. Initially the balloon containing the...
A flexible balloon contains 0.360 mol of an unknown polyatomic gas. Initially the balloon containing the gas has a volume of 7.50 m3  and a temperature of 27.0 ∘C. The gas first expands isobarically until the volume doubles. Then it expands adiabatically until the temperature returns to its initial value. Assume that the gas may be treated as an ideal gas with Cp=33.26J/mol⋅K and γ=4/3. What is the total heat Q supplied to the gas in the process? What...
A flexible balloon contains 0.335 mol of an unknown polyatomic gas. Initially the balloon containing the...
A flexible balloon contains 0.335 mol of an unknown polyatomic gas. Initially the balloon containing the gas has a volume of 6700 cm3 and a temperature of 25.0 ∘C The gas first expands isobarically until the volume doubles. Then it expands adiabatically until the temperature returns to its initial value. Assume that the gas may be treated as an ideal gas with Cp=33.26J/mol⋅K and γ=4/3. a.) What is the total heat Q supplied to the gas in the process? b.)...
A sample consisting of 2.0 mol CO2 occupies a rigid container (constant volume) of 15.0 L...
A sample consisting of 2.0 mol CO2 occupies a rigid container (constant volume) of 15.0 L at 300 K. When it is supplied with 2.35 kJ of energy as heat its temperature increases to 341 K. Assume that CO2 is described by the van der Waals equation, and calculate w, U, and H.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT