In: Math
5. Random pigeonholing
100 pigeons p1,…,p100 fly into 500 labelled holes h1,…,h500. Each pigeon picks a hole uniformly at random and independently from the choices of the other pigeons.
probability that at least one hole contains at least 2 pigeons
= 1 - probability that one hole contains maximum 1 pigeon
= 1 - 500P100 /500^100
= 1 - 500!/(100!) / (500^100)
= 1 - (500*499*...401)/(500^100)
=
0.9999758457295990 |
401 | 0.802 |
402 | 0.804 |
403 | 0.806 |
404 | 0.808 |
405 | 0.81 |
406 | 0.812 |
407 | 0.814 |
408 | 0.816 |
409 | 0.818 |
410 | 0.82 |
411 | 0.822 |
412 | 0.824 |
413 | 0.826 |
414 | 0.828 |
415 | 0.83 |
416 | 0.832 |
417 | 0.834 |
418 | 0.836 |
419 | 0.838 |
420 | 0.84 |
421 | 0.842 |
422 | 0.844 |
423 | 0.846 |
424 | 0.848 |
425 | 0.85 |
426 | 0.852 |
427 | 0.854 |
428 | 0.856 |
429 | 0.858 |
430 | 0.86 |
431 | 0.862 |
432 | 0.864 |
433 | 0.866 |
434 | 0.868 |
435 | 0.87 |
436 | 0.872 |
437 | 0.874 |
438 | 0.876 |
439 | 0.878 |
440 | 0.88 |
441 | 0.882 |
442 | 0.884 |
443 | 0.886 |
444 | 0.888 |
445 | 0.89 |
446 | 0.892 |
447 | 0.894 |
448 | 0.896 |
449 | 0.898 |
450 | 0.9 |
451 | 0.902 |
452 | 0.904 |
453 | 0.906 |
454 | 0.908 |
455 | 0.91 |
456 | 0.912 |
457 | 0.914 |
458 | 0.916 |
459 | 0.918 |
460 | 0.92 |
461 | 0.922 |
462 | 0.924 |
463 | 0.926 |
464 | 0.928 |
465 | 0.93 |
466 | 0.932 |
467 | 0.934 |
468 | 0.936 |
469 | 0.938 |
470 | 0.94 |
471 | 0.942 |
472 | 0.944 |
473 | 0.946 |
474 | 0.948 |
475 | 0.95 |
476 | 0.952 |
477 | 0.954 |
478 | 0.956 |
479 | 0.958 |
480 | 0.96 |
481 | 0.962 |
482 | 0.964 |
483 | 0.966 |
484 | 0.968 |
485 | 0.97 |
486 | 0.972 |
487 | 0.974 |
488 | 0.976 |
489 | 0.978 |
490 | 0.98 |
491 | 0.982 |
492 | 0.984 |
493 | 0.986 |
494 | 0.988 |
495 | 0.99 |
496 | 0.992 |
497 | 0.994 |
498 | 0.996 |
499 | 0.998 |
500 | 1 |
product | 2.41543E-05 |
p | 0.9999758457295990 |