In: Statistics and Probability
Given the following hypothesis:
H0: μ = 100
H1: μ ≠ 100
A random sample of six resulted in the following values:
| 114 | 120 | 119 | 108 | 113 | 108 | 
Using the 0.01 significance level, can we conclude that the mean is different from 100?
a. What is the decision rule? (Negative answer should be indicated by a minus sign. Round the final answers to 3 decimal places.)
Reject H0: μ = 100 and accept H1: μ ≠ 100 when the test statistic is (Click to select) inside the interval outside the interval ( , ).
b. Compute the value of the test statistic. (Round the final answer to 2 decimal places.)
Value of the test statistic
c. What is your decision regarding H0?
(Click to select) Reject Do not reject H0 .
d. Estimate the p-value.
(Click to select) Zero Close to zero One
e-1. Construct a 99% confidence interval.
Confidence interval is from to .
e-2. Use the results of the confidence interval to support your decision in part (c).
(Click to select) Reject Do not Reject H0 .
a)
α=0.01
degree of freedom=   DF=n-1=   5
critical t value, t* =    ±   4.032  
[Excel formula =t.inv(α/no. of tails,df) ]
reject Ho when t >4.032 ot t < -4.032
Reject H0: μ = 100 and accept H1: μ ≠ 100 when the test statistic is outside the interval ( -4.032 ,4.032 )
b)
sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) )
=   5.1640      
           
Sample Size ,   n =    6  
           
   
Sample Mean,    x̅ = ΣX/n =   
113.6667          
       
          
           
   
degree of freedom=   DF=n-1=   5  
           
   
          
           
   
Standard Error , SE = s/√n =   5.1640   / √
   6   =   2.1082  
   
t-test statistic= (x̅ - µ )/SE = (  
113.667   -   100   ) /   
2.1082   =   6.48
c)
reject Ho
d)
p-Value   =   0.001
close to zero
e-1)
Level of Significance ,    α =   
0.01          
degree of freedom=   DF=n-1=   5  
       
't value='   tα/2=   4.032   [Excel
formula =t.inv(α/2,df) ]      
          
       
Standard Error , SE = s/√n =   5.1640   /
√   6   =   2.1082
margin of error , E=t*SE =   4.0321  
*   2.1082   =   8.5005
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    113.67  
-   8.500504   =   105.1662
Interval Upper Limit = x̅ + E =    113.67  
-   8.500504   =   122.1672
99%   confidence interval is (  
105.1662   < µ <   122.1672  
)
e-2)
reject Ho, because 100 is outside the interval