Question

In: Mechanical Engineering

Q1) In a food processing facility, a spherical container of inner radius r1 =41 cm, outer...


Q1) In a food processing facility, a spherical container of inner radius r1 =41 cm, outer radius r2 = 43 cm, and thermal conductivity k = 2 W/m · °C is used to store hot water and to keep it at 105°C at all times. To accomplish this, the outer surface of the container is wrapped with a 510-W electric strip heater and then insulated. The temperature of the inner surface of the container is observed to be nearly 100°C at all times. Assuming 80 percent of the heat generated in the heater is transferred to container
a) Express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the container,
b) Obtain a relation for the variation of temperature in the container material by solving the differential equation.
c) Determine the temperature at the center plane of the container

Solutions

Expert Solution


Related Solutions

A solid spherical shell with a 12.0 cm inner radius and 15.0 cm outer radius is...
A solid spherical shell with a 12.0 cm inner radius and 15.0 cm outer radius is filled with water. A heater inside the water maintains the water at a constant temperature of 350 K. The outer surface of the shell is maintained at 280 K. The shell is made of Portland cement, which has a thermal conductivity of 0.29 W/(mK). (a) Starting from the basic equation for thermal conduction, derive the rate at which heat flows out of the water....
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b =...
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b = 2.40 cm has (within its thickness) a positive volume charge density p = A/r, where A is a constant and r is the distance from the center of the shell. In addition, a small ball of charge q = 4.5 x 10 ^ -14 C is located at the center of that center. Find the total charge of the shell.
A non-conducting spherical shell of inner radius R1 and outer radius R2 contains a uniform volume...
A non-conducting spherical shell of inner radius R1 and outer radius R2 contains a uniform volume charge density p through the shell. Use Gauss's Law to derive an equation for the magnitude of the electric field at the following radial distances r from the center of the sphere. Your answer should be in terms of p,R1,R2,r Eo, and pi. a). r < R1 b.) R1 <r<2 c.) r>R2
Aspherical container of inner radius r1 2 m, outer radius r2 2.1 m, and thermal conductivity...
Aspherical container of inner radius r1 2 m, outer radius r2 2.1 m, and thermal conductivity k 30 W/m · °C is filled with iced water at 0°C. The container is gaining heat by convection from the surrounding air at T 25°C with a heat transfer coefficient of h 18 W/m2 · °C. Assuming the inner surface temperature of the container to be 0°C, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the...
3. Assume an annulus of inner radius r1 and outer radius r2. The inner surface is...
3. Assume an annulus of inner radius r1 and outer radius r2. The inner surface is at T1, the outer surface at T2, T1 > T2. Assume heat transfer between the surfaces by conduction, with a variable conductivity, k = a + bT, develop an expression for the temperature in the material of the annulus.
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -1q and the outer shell has a total charge of +3q. Select True or False for the following statements. 1. The total charge on the inner surface of the small shell is -4q. 2. The total charge on the outer surface of the...
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -2q and the outer shell has a total charge of +4q. Select True or False for the following statements. The total charge on the inner surface of the small shell is zero. True False  The total charge on the inner surface of the large...
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -2q and the outer shell has a total charge of +4q. Select True or False for the following statements. True False  The radial component of the electric field in the region r > d is given by +4q/(4??0r2). True False  The radial component of the...
A spherical shell has in inner radius Ri and an outer radius Ro. Within the shell,...
A spherical shell has in inner radius Ri and an outer radius Ro. Within the shell, a total charge Q is uniformly distributed. Calculate: a) the charge density within the shell (if you cannot get this answer, you can proceed without it). b) the electric field strength E(r) outside the shell (r > Ro). c) the electric field strength inside the shell (r< Ri). d) the electric field within the shell (Ri < r < Ro) e) show that your...
A long pipe of outer radius 3.50 cm and inner radius 2.98 cm carries a uniform...
A long pipe of outer radius 3.50 cm and inner radius 2.98 cm carries a uniform charge density of 5.22 mC/m3. Using Gauss\'s law and assuming the pipe is sufficiently long to consider it infinitely long, calculate the electric field r = 7.35 cm from the centerline of the pipe.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT