Question

In: Physics

Aspherical container of inner radius r1 2 m, outer radius r2 2.1 m, and thermal conductivity...

Aspherical container of inner radius r1 2 m, outer radius r2 2.1 m, and thermal conductivity k 30 W/m · °C is filled with iced water at 0°C. The container is gaining heat by convection from the surrounding air at T
25°C with a heat transfer coefficient of h 18 W/m2 · °C. Assuming the inner surface temperature of the container to be 0°C, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the container, (b) obtain a relation for the variation of temperature in the container by solving the differential equation, and (c) evaluate the rate of heat gain to the iced water

Solutions

Expert Solution


Related Solutions

3. Assume an annulus of inner radius r1 and outer radius r2. The inner surface is...
3. Assume an annulus of inner radius r1 and outer radius r2. The inner surface is at T1, the outer surface at T2, T1 > T2. Assume heat transfer between the surfaces by conduction, with a variable conductivity, k = a + bT, develop an expression for the temperature in the material of the annulus.
A coaxial cylindrical conductor with outer radius R2 and inner radius R1 and has dielectric Er...
A coaxial cylindrical conductor with outer radius R2 and inner radius R1 and has dielectric Er relative dielectric between the conductor. Is the charge per unit length on the Anner cylinder is lemda, find (a) D, E for a <r<b ( (b) potential difference between the conductors (c) the capacitance per unit length.
A non-conducting spherical shell of inner radius R1 and outer radius R2 contains a uniform volume...
A non-conducting spherical shell of inner radius R1 and outer radius R2 contains a uniform volume charge density p through the shell. Use Gauss's Law to derive an equation for the magnitude of the electric field at the following radial distances r from the center of the sphere. Your answer should be in terms of p,R1,R2,r Eo, and pi. a). r < R1 b.) R1 <r<2 c.) r>R2
There is a long cylinder magnet with inner radius of R1 outher radius of R2 length...
There is a long cylinder magnet with inner radius of R1 outher radius of R2 length of L and magnetization of M=MoZ for R1<rR2 Calculate B and H everywhere Claculate bound surface Calculate the magnetic vector potential everywhere Calculate B again along z axis by assuming the cylindircal magnet is short What is the electrostatic equivalent of this structure
A spherical shell of wood with thermal conductivity of 0.13 W/m.K and an inner and outer...
A spherical shell of wood with thermal conductivity of 0.13 W/m.K and an inner and outer radius of 10 cm and 20 cm respectively contains a mixture of water and water vapor(100 C) inside the shell which is undergoing a phase change at atmospheric pressure. The shell is suspended in a large room with an ambient air temperature of 25 C Determine the temperature on the outer surface of the spherical shell and rate of heat loss from the fluid...
A hollow, conducting sphere with an outer radius of .250 m and an inner radius of...
A hollow, conducting sphere with an outer radius of .250 m and an inner radius of .200 m has a uniform surface charge density of -6.37 muC/me2.When a charge is now introduced at the center of the cavity inside the sphere, the new charge density on the outside of the sphere is -4.46 muC/me2. What is the charge at the center of the cavity?
A hollow, conducting sphere with an outer radius of 0.240 m and an inner radius of...
A hollow, conducting sphere with an outer radius of 0.240 m and an inner radius of 0.200 m has a uniform surface charge density of +6.37 × 10−6 C/m2. A charge of -0.400 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Express your answer with the appropriate units. Calculate the strength of the electric field just outside the sphere. Express your answer with the appropriate units....
A. Consider two concentric spherical structures of radius r1 and r2 such that r1 < r2...
A. Consider two concentric spherical structures of radius r1 and r2 such that r1 < r2 and full load Q and -2Q respectively. Calculate the magnitude of the field on ́ectrico in all three regions, i.e. within the smaller sphere, between the spheres and outside the sphere of the larger radius. Where does the electric field point to for this system? (no matter what material these concentric spherical are made of) B. Two cylindrical coaxial shells with radius r1 and...
A conducting spherical shell with inner radius a=0.1 m and outer radius b=0.5 m has a...
A conducting spherical shell with inner radius a=0.1 m and outer radius b=0.5 m has a positive point charge Q=+5 nC located in its center. The total charge on the shell is -3Q and it is insulated from its surroundings. a. Calculate the surface charge density on the surfaces of the shell. b. Calculate the magnitude of the electric field at a radius of 0.01 m, and at a radius of 1.5 m. c. Sketch the electric field lines in...
A long circular copper pipe (thermal diffusivity 111 mm2/s) with inner radius 1 cm and outer...
A long circular copper pipe (thermal diffusivity 111 mm2/s) with inner radius 1 cm and outer radius 1.2 cm is placed in an ice bath (0◦C) for a very long time. Then, at time t = 0, boiling water (100◦C) beings to flow through the pipe. Find the temperature of the pipe as a function of the radius r and the time t. Note any assumptions that you make.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT