Question

In: Computer Science

In class, we have studied the bisection method for finding a root of an equation. Another...

In class, we have studied the bisection method for finding a root of an equation. Another method for finding a root, Newton’s method, usually converges to a solution even faster than the bisection method, if it converges at all. Newton’s method starts with an initial guess for a root, ?0 , and then generates successive approximate roots ?1 , ?2 , …. ?i , ?i+i, …. using the iterative formula?′(?௝) Where ?’(xi) is the derivative of function ? evaluated at ? = ?i . The formula generates a new guess, ?j+1, from a previous one, ?j . Sometimes Newton’s method will fail to converge to a root. In this case, the program should terminate after many trials, perhaps 100. The figure above shows the geometric interpolation of Newton’s method where ?0 , ?1 , and ?2 represent successive guesses for the root. At each point ?j , the derivative, ?’(xj), is the slope of the tangent to the curve, ?(?). The next guess for the root, ?j+1, is the point at which the tangent crosses the x-axis. Write a program that uses Newton’s method to approximate the nth root of a number to six decimal places. If ?n = ?, then ?n-? = 0. Finding a root of the second equation will give you n√?  . Test your program on √3, 3√10 , and 3√−2. Your program could use c/2 as its initial guess.

Solutions

Expert Solution


Related Solutions

How could a root finding algorithm like the bisection method be used to approximate a value...
How could a root finding algorithm like the bisection method be used to approximate a value such as sqrt(3). In other words how can a root finding algorithm find an x value with a given y value? Write a script to illustrate this usage scenario. Compare the output of your script with the result from a calculator. You must use matlab!! using a while loop.
7. Finding Roots Using the Bisection Method Write a function that implements the "bisection method" for...
7. Finding Roots Using the Bisection Method Write a function that implements the "bisection method" for finding the roots of function. The signature of your function should look like def find_root(f,a,b,n): where n is the maximum number of iterations of to search for the root. The code should follow this algorithm: We are given a continuous function f and numbers a and b and with a<b with f(a)<0<f(b). From the intermediate value theorem we know that there exists a c...
USING BISECTION METHOD, FIND THE ROOT OF 0.5e^x - 5x + 2 = 0 ON THE...
USING BISECTION METHOD, FIND THE ROOT OF 0.5e^x - 5x + 2 = 0 ON THE INTERVAL [ 0 , 1 ] UP TO 3 DECIMAL PLACES. USE NEWTON'S METHOD TO APPROXIMATE THE ROOT OF f(x)=x^2-5    IN THE INTERVAL  [ 2 , 3 ] UP TO 4 DECIMAL PLACES.
To find a positive root for , write a MATLAB script file that uses Bisection method....
To find a positive root for , write a MATLAB script file that uses Bisection method. Choose any initial value that is needed. Use absolute relative approximate error to be less than 0.01. Your code should report the number of iteration and the value of x.
Let . If we use Accelerated Newton-Raphson method to approximate the root of the equation ,...
Let . If we use Accelerated Newton-Raphson method to approximate the root of the equation , which of the following(s) is/are ture: (I)  is multiple root of order (II) Accelerated Newton-Raphson formula is : (III) The sequence  obtained by the Accelerated Newton-Raphson method converge to the root  quadratically.
Use the bisection method to approximate the root of f(x)=x-cosx in the range [0.0,1.5]. Stop when...
Use the bisection method to approximate the root of f(x)=x-cosx in the range [0.0,1.5]. Stop when the error is less than 0.002%
Using the bisection method, find the root of the following function: f(x)=cos(2x) - x Use the...
Using the bisection method, find the root of the following function: f(x)=cos(2x) - x Use the following initial values: xl=0 and xu=2 NOTE: Perform only 3 iterations.
Write a Matlab function for: 1. Root Finding: Calculate the root of the equation f(x)=x^3 −5x^2...
Write a Matlab function for: 1. Root Finding: Calculate the root of the equation f(x)=x^3 −5x^2 +3x−7 Calculate the accuracy of the solution to 1 × 10−10. Find the number of iterations required to achieve this accuracy. Compute the root of the equation with the bisection method. Your program should output the following lines: • Bisection Method: Method converged to root X after Y iterations with a relative error of Z.
The Ostrowski method for finding a single root of ?(?)=0 is given by Initial guess ?0...
The Ostrowski method for finding a single root of ?(?)=0 is given by Initial guess ?0 ??=??−?(??)?′(??), ??+1=??−?(??)?′(??) ?(??)?(??)−2?(??). a) Write MATLAB or OCTAVE coding to implement the Ostrowski method. (Hint: You may use the coding of Newton Method given in Moodle pages) b) Use your coding to find a root of the equation (?−2)2−ln(?)=0 With initial guess ?0=1.0 and ?0 = 3.0. Write or print the results in your Homework sheet.
I'm writing a code for the Secant Method for root finding, but my code makes an...
I'm writing a code for the Secant Method for root finding, but my code makes an infinite code of the correct answer. Below is my code, how do I fix it? def f(x): return (x**6)+7*(x**5)-15*(x**4)-70*(x**3)+75*(x**2)+175*x-125 def secant(): p0=float(input('Enter an initial guess for the root ')) p1=float(input('Enter another guess ')) TOL=float(input('Enter a tolerance in decimal form ')) n=15 i=1 while i<=n: p=p1-f(p1)*(p1-p0)/(f(p1)-f(p0)) if abs(p-p1)<TOL: print(p) else: p0=p1 p1=p i=i+1 else: print(p) return p    print(secant())
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT