Question

In: Advanced Math

Use the bisection method to approximate the root of f(x)=x-cosx in the range [0.0,1.5]. Stop when...

Use the bisection method to approximate the root of f(x)=x-cosx in the range [0.0,1.5]. Stop when the error is less than 0.002%

Solutions

Expert Solution

Hence the required solution is: 0.739082


Related Solutions

How could a root finding algorithm like the bisection method be used to approximate a value...
How could a root finding algorithm like the bisection method be used to approximate a value such as sqrt(3). In other words how can a root finding algorithm find an x value with a given y value? Write a script to illustrate this usage scenario. Compare the output of your script with the result from a calculator. You must use matlab!! using a while loop.
f(x)=x^3-3x-1=0 x=[0,2] epsilon=5*10^-2 1. perform the bisection method for the root in [0,2] until your root...
f(x)=x^3-3x-1=0 x=[0,2] epsilon=5*10^-2 1. perform the bisection method for the root in [0,2] until your root is closer to the real root within epsilon. Let x_0=1.0, x_1=1.2 2. perform the secant method until your root is closer to the real root within epsilon. 3. do as in 2. with the Newton's method, with x_0=1.1
Use the Fixed-Point Iteration Method to find the root of f ( x ) = x...
Use the Fixed-Point Iteration Method to find the root of f ( x ) = x e^x/2 + 1.2 x - 5 in the interval [1,2].
USING BISECTION METHOD, FIND THE ROOT OF 0.5e^x - 5x + 2 = 0 ON THE...
USING BISECTION METHOD, FIND THE ROOT OF 0.5e^x - 5x + 2 = 0 ON THE INTERVAL [ 0 , 1 ] UP TO 3 DECIMAL PLACES. USE NEWTON'S METHOD TO APPROXIMATE THE ROOT OF f(x)=x^2-5    IN THE INTERVAL  [ 2 , 3 ] UP TO 4 DECIMAL PLACES.
use bisection to find the real root x = sin(x) + 1 with the initial guesses...
use bisection to find the real root x = sin(x) + 1 with the initial guesses of x l = 0 and x u = 3. perform the computation until the approximate error falls below 5%
Use Newton’s Method to approximate the value of x where f(x) = x3 + 10x2 +...
Use Newton’s Method to approximate the value of x where f(x) = x3 + 10x2 + 15x – 2 has a local maximum. Give the value accurate to 3 decimal places.
Use the secant Method to find a root for the function: f(x) = x^3 + 2x^2...
Use the secant Method to find a root for the function: f(x) = x^3 + 2x^2 + 10x -20, with x_0 = 2, and x_1 = 1.
Use the False Position method to find a guess of the root of f(x) = cos(x2...
Use the False Position method to find a guess of the root of f(x) = cos(x2 ) with lower and upper bounds of 0 and 2, respectively. Then, narrow the interval and find a new guess of the root using False Position. What is your relative approximate error? a. 8.47% answer b. 12.45% c. 0.112 d. 0.243 e. None of the above Please provide complete solution how the answer is a thumbs up for correct and neat solution! step by...
f(x) = ((x − 1)^2) e^x How easy would it be to apply the Bisection Method...
f(x) = ((x − 1)^2) e^x How easy would it be to apply the Bisection Method compared to Newton's method and modified Newton's method to the function f(x)? Explain.
Let . If we use Accelerated Newton-Raphson method to approximate the root of the equation ,...
Let . If we use Accelerated Newton-Raphson method to approximate the root of the equation , which of the following(s) is/are ture: (I)  is multiple root of order (II) Accelerated Newton-Raphson formula is : (III) The sequence  obtained by the Accelerated Newton-Raphson method converge to the root  quadratically.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT