Question

In: Advanced Math

Determine the general solutions for y" + 4y' + 4y = 8x^2 , y" + 4y'...

Determine the general solutions for y" + 4y' + 4y = 8x^2 , y" + 4y' 3y = 32xe^x , and  y" + 4y' + 5y = 5x − 1.

Solutions

Expert Solution


Related Solutions

a) Select all solutions of (d^2/dx^2)y(x)+64y(x)=0. y(x)=3cos(8x) y(x)=3cos(4x) y(x)=C1sin(8x)+C2cos(8x) y(x)=−4sin(8x) y(x)=C2cos(8x) b) Select all solutions of...
a) Select all solutions of (d^2/dx^2)y(x)+64y(x)=0. y(x)=3cos(8x) y(x)=3cos(4x) y(x)=C1sin(8x)+C2cos(8x) y(x)=−4sin(8x) y(x)=C2cos(8x) b) Select all solutions of (d^2/dx^2)y(x)+36y(x)=0. y(x)=C2cos(3x) y(x)=C1sin(3x) y(x)=3cos(3x) y(x)=3cos(6x) y(x)=3sin(3x)+8cos(3x)
use the annihilator method to show y"+3y'-4y=8x+5ex, y(0)=1, y'(0)=2
use the annihilator method to show y"+3y'-4y=8x+5ex, y(0)=1, y'(0)=2
FIND THE GENERAL SOLUTION TO THE DE: Y”’ + 4Y” – Y’ – 4Y = 0...
FIND THE GENERAL SOLUTION TO THE DE: Y”’ + 4Y” – Y’ – 4Y = 0                                           COMPUTE:               L {7 e 3t – 5 cos ( 2t ) – 4 t 2 }                  COMPUTE:              L – 1 {(3s + 6 ) / [ s ( s 2 + s – 6 ) ] }            SOLVE THE INITIAL VALUE PROBLEM USING LAPLACE TRANSFORMS:              Y” + 6Y’ + 5Y = 12 e t       WHEN :   f ( 0 ) = -...
y''+4y'+4y=2e^{-2x} Find general solution.
y''+4y'+4y=2e^{-2x} Find general solution.
Determine the center and radius and make the circle graph x^2 - 8x + y^2 -...
Determine the center and radius and make the circle graph x^2 - 8x + y^2 - 10y = -5
the following differential equation determine using the method of undetermined coefficients y''-4y'=8x^4+x^2e^-4x+sin3x
the following differential equation determine using the method of undetermined coefficients y''-4y'=8x^4+x^2e^-4x+sin3x
Find the general solution of the following equations: y′′ −4y′ +4y=0; y′′ −5y′ +6y=0; y′′ −...
Find the general solution of the following equations: y′′ −4y′ +4y=0; y′′ −5y′ +6y=0; y′′ − 2y′ = 0
Find the general solution of the differential equation y'' + 4y' + 4y = (e-2t/t2)
Find the general solution of the differential equation y'' + 4y' + 4y = (e-2t/t2)
A) Solve the initial value problem: 8x−4y√(x^2+1) * dy/dx=0 y(0)=−8 y(x)= B)  Find the function y=y(x) (for...
A) Solve the initial value problem: 8x−4y√(x^2+1) * dy/dx=0 y(0)=−8 y(x)= B)  Find the function y=y(x) (for x>0 ) which satisfies the separable differential equation dy/dx=(10+16x)/xy^2 ; x>0 with the initial condition y(1)=2 y= C) Find the solution to the differential equation dy/dt=0.2(y−150) if y=30 when t=0 y=
#3. Given the conic section written in general form: x^2 - y^2 - 4x - 4y...
#3. Given the conic section written in general form: x^2 - y^2 - 4x - 4y + 9 = 0 FIND: Part a) Identify which type of graph the conic section has. Part b) Now rewrite the equation in Standard Form for that particular type of Conic section. Part c) Use its Standard Form to graph the conic section. Part d) Label any vertices, focal points, center, radius, directrix or asymptotes as is appropriate for each graph. I have a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT