Question

In: Statistics and Probability

Suppose x has a distribution with μ = 12 and σ = 8. (a) If a...

Suppose x has a distribution with μ = 12 and σ = 8.

(a) If a random sample of size n = 33 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to four decimal places.)

μx =
σx =
P(12 ≤ x ≤ 14) =


(b) If a random sample of size n = 61 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to four decimal places.)

μx =
σx =
P(12 ≤ x ≤ 14) =


(c) Why should you expect the probability of part (b) to be higher than that of part (a)? (Hint: Consider the standard deviations in parts (a) and (b).)
The standard deviation of part (b) is  ---Select--- the same as larger than smaller than part (a) because of the  ---Select--- same larger smaller sample size. Therefore, the distribution about μx is  ---Select--- the same wider narrower .

Solutions

Expert Solution

X has a distribution with  μ = 12 and σ = 8.

a)

Sample size, n= 33

= 12

= = =2.3094

Let ~ Normal ( 12, 2.3094)

P( 12 <= <= 14) = P( <   < )

= P( 0 < z < 0.87)

= P( z < 0.87) - P( z< 0)

=0.80785- 0.5

= 0.30785

b)

Sample size, n= 61

= 12

= = =1.0243

Let ~ Normal ( 12, 1.0243)

P( 12 <= <= 14) = P( <   < )

= P( 0 < z < 1.95)

= P( z < 1.95) - P( z< 0)

=0.97441- 0.5

= 0.47441

c)The standard deviation of part (b) smaller than part (a) because of the larger sample size. Therefore, the distribution about μx is   narrower .


Related Solutions

Suppose x has a distribution with μ = 12 and σ = 9. A.) If a...
Suppose x has a distribution with μ = 12 and σ = 9. A.) If a random sample of size n = 35 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to three decimal places.) P(12 ≤ x ≤ 14)= B.) If a random sample of size n = 62 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and...
Suppose x has a distribution with μ = 12 and σ = 7. (a) If a...
Suppose x has a distribution with μ = 12 and σ = 7. (a) If a random sample of size n = 31 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(12 ≤ x ≤ 14) = (b) If a random sample of size n = 75 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx...
Suppose x has a distribution with μ = 17 and σ = 12. (a) If a...
Suppose x has a distribution with μ = 17 and σ = 12. (a) If a random sample of size n = 33 is drawn, find μx, σx and P(17 ≤ x ≤ 19). (Round σx to two decimal places and the probability to four decimal places.) P(17 ≤ x ≤ 19) = (b) If a random sample of size n = 71 is drawn, find μx, σx and P(17 ≤ x ≤ 19). (Round σx to two decimal places...
Suppose x has a distribution with μ = 12 and σ = 5. (a) If a...
Suppose x has a distribution with μ = 12 and σ = 5. (a) If a random sample of size n = 31 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(12 ≤ x ≤ 14) = (b) If a random sample of size n = 67 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx...
Suppose x has a distribution with μ = 11 and σ = 6. (a) If a...
Suppose x has a distribution with μ = 11 and σ = 6. (a) If a random sample of size n = 39 is drawn, find μx, σ x and P(11 ≤ x ≤ 13). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(11 ≤ x ≤ 13) = (b) If a random sample of size n = 70 is drawn, find μx, σ x and P(11 ≤ x ≤...
Suppose x has a distribution with μ = 25 and σ = 18. (a) If a...
Suppose x has a distribution with μ = 25 and σ = 18. (a) If a random sample of size n = 34 is drawn, find μx, σ x and P(25 ≤ x ≤ 27). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(25 ≤ x ≤ 27) = (b) If a random sample of size n = 62 is drawn, find μx, σ x and P(25 ≤ x ≤...
A. Suppose x has a distribution with μ = 23 and σ = 15. (a) If...
A. Suppose x has a distribution with μ = 23 and σ = 15. (a) If a random sample of size n = 39 is drawn, find μx, σx and P(23 ≤ x ≤ 25). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(23 ≤ x ≤ 25) = (b) If a random sample of size n = 64 is drawn, find μx, σx and P(23 ≤ x ≤ 25). (Round...
Suppose x has a distribution with μ = 21 and σ = 15. (a) If a...
Suppose x has a distribution with μ = 21 and σ = 15. (a) If a random sample of size n = 37 is drawn, find μx, σx and P(21 ≤ x ≤ 23). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(21 ≤ x ≤ 23) = (b) If a random sample of size n = 57 is drawn, find μx, σx and P(21 ≤ x ≤ 23). (Round σx...
Suppose x has a distribution with μ = 11 and σ = 10. (a) If a...
Suppose x has a distribution with μ = 11 and σ = 10. (a) If a random sample of size n = 36 is drawn, find μx, σx and P(11 ≤ x ≤ 13). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(11 ≤ x ≤ 13) = (b) If a random sample of size n = 64 is drawn, find μx, σx and P(11 ≤ x ≤ 13). (Round σx...
Suppose x has a distribution with μ = 27 and σ = 19. (a) If a...
Suppose x has a distribution with μ = 27 and σ = 19. (a) If a random sample of size n = 39 is drawn, find μx, σ x and P(27 ≤ x ≤ 29). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(27 ≤ x ≤ 29) = (b) If a random sample of size n = 64 is drawn, find μx, σ x and P(27 ≤ x ≤...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT