Question

In: Advanced Math

every analytic function is locally 1-1 whenever its derivative is nonzero): Let Ω⊂ℂΩ⊂C be open, and...

every analytic function is locally 1-1 whenever its derivative is nonzero): Let ΩΩ⊂C be open, and let ?:Ωf:Ω→C be 1-1 and analytic on Ω Then ?(?0)0f′(z0)≠0 for every ?0Ωz0∈Ω.
by contray suppose f'(z)=0

Solutions

Expert Solution


Related Solutions

1) Let f(x) be a continuous, everywhere differentiable function and g(x) be its derivative. If f(c)...
1) Let f(x) be a continuous, everywhere differentiable function and g(x) be its derivative. If f(c) = n and g(c) = d, write the equation of the tangent line at x = c using only the variables y, x, c, n, and d. You may use point-slope or slope-intercept but do not introduce more variables. 2) Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)? 3) Let f(x) be a continuous, everywhere differentiable...
Let Prob be a probability function on the power set P(Ω) of a sample space Ω....
Let Prob be a probability function on the power set P(Ω) of a sample space Ω. Let B be a set such that Prob(B) > 0. For any set A, define G(A|B) = Prob(A ∩ B) Prob(B) . Prove that for fixed B and as as a function of A, G(·|B) is also a probability function, meaning that G(·|B) satisfies the axioms of probability..
Question 1 Let f be a function for which the first derivative is f ' (x)...
Question 1 Let f be a function for which the first derivative is f ' (x) = 2x 2 - 5 / x2 for x > 0, f(1) = 7 and f(5) = 11. Show work for all question. a). Show that f satisfies the hypotheses of the Mean Value Theorem on [1, 5] b)Find the value(s) of c on (1, 5) that satisfyies the conclusion of the Mean Value Theorem. Question 2 Let f(x) = x 3 − 3x...
(a) Let n be odd and ω a primitive nth root of 1 (means that its...
(a) Let n be odd and ω a primitive nth root of 1 (means that its order is n). Show this implies that −ω is a primitive 2nth root of 1. Prove the converse: Let n be odd and ω a primitive 2nth root of 1. Show −ω is a primitive nth root of 1. (b) Recall that the nth cyclotomic polynomial is defined as Φn(x) = Y gcd(k,n)=1 (x−ωk) where k ranges over 1,...,n−1 and ωk = e2πik/n is...
Use the given function, its first derivative, and its second derivative to answer the following: f(x)=(1/3)x^3...
Use the given function, its first derivative, and its second derivative to answer the following: f(x)=(1/3)x^3 - (1/2)x^2 - 6x + 5 f'(x)= x^2 - x - 6 = (x+2)(x-3) f''(x)= 2x - 1 a) What are the intervals of increase and the intervals of decrease b) Identify local min and max points c) What are the intervals where the function is concave up, concave down and identify the inflection points
Let A ⊆ R, let f : A → R be a function, and let c...
Let A ⊆ R, let f : A → R be a function, and let c be a limit point of A. Suppose that a student copied down the following definition of the limit of f at c: “we say that limx→c f(x) = L provided that, for all ε > 0, there exists a δ ≥ 0 such that if 0 < |x − c| < δ and x ∈ A, then |f(x) − L| < ε”. What was...
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show...
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show that there exists a point c ∈ (0, 2π) such that cos(c)f(c) + sin(c)f'(c) = 2 sin(c).
1. Let v1, . . . , vn be nonzero vectors such that each vi+1 has...
1. Let v1, . . . , vn be nonzero vectors such that each vi+1 has more leading 0s than vi . Show that vectors v1, . . . , vn are linearly independent.
Let A, B and C be mutually independent events of a probability space (Ω, F, P),...
Let A, B and C be mutually independent events of a probability space (Ω, F, P), such that P(A) = P(B) = P(C) = 1 4 . Compute P((Ac ∩ Bc ) ∪ C). b) [4 points] Suppose that in a bicycle race, there are 19 professional cyclists, that are divided in a random manner into two groups. One group contains 10 people and the other group has 9 people. What is the probability that two particular people, let’s say...
Let f: [0 1] → R be a function of the class c ^ 2 that...
Let f: [0 1] → R be a function of the class c ^ 2 that satisfies the differential equation f '' (x) = e^xf(x) for all x in (0,1). Show that if x0 is in (0,1) then f can not have a positive local maximum at x0 and can not have a negative local minimum at x0. If f (0) = f (1) = 0, prove that f = 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT