Question

In: Math

Question 1 Let f be a function for which the first derivative is f ' (x)...

Question 1

Let f be a function for which the first derivative is f ' (x) = 2x 2 - 5 / x2 for x > 0, f(1) = 7 and f(5) = 11. Show work for all question.

a). Show that f satisfies the hypotheses of the Mean Value Theorem on [1, 5]

b)Find the value(s) of c on (1, 5) that satisfyies the conclusion of the Mean Value Theorem.

Question 2

Let f(x) = x 3 − 3x 2 . Find intervals where f ' (x) is BOTH positive and decreasing. Show work.

Solutions

Expert Solution


Related Solutions

Question 1 f is a function whose domain is (0,∞) and whose first derivative is f...
Question 1 f is a function whose domain is (0,∞) and whose first derivative is f ' (x) = (4 − x)x -3 for x > 0 a) Find the critical number(s) of f. Does f have a local minimum, a local maximum, or neither at its critical number(s)? Explain. b) On which interval(s) if f concave up, concave down? c) At which value(s) of x does f have a point of inflection, if any? Question 2 A rectangular box...
1) Let f(x) be a continuous, everywhere differentiable function and g(x) be its derivative. If f(c)...
1) Let f(x) be a continuous, everywhere differentiable function and g(x) be its derivative. If f(c) = n and g(c) = d, write the equation of the tangent line at x = c using only the variables y, x, c, n, and d. You may use point-slope or slope-intercept but do not introduce more variables. 2) Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)? 3) Let f(x) be a continuous, everywhere differentiable...
Use the given function, its first derivative, and its second derivative to answer the following: f(x)=(1/3)x^3...
Use the given function, its first derivative, and its second derivative to answer the following: f(x)=(1/3)x^3 - (1/2)x^2 - 6x + 5 f'(x)= x^2 - x - 6 = (x+2)(x-3) f''(x)= 2x - 1 a) What are the intervals of increase and the intervals of decrease b) Identify local min and max points c) What are the intervals where the function is concave up, concave down and identify the inflection points
Let f(x) = −3+(3x2 −x+1) ln(2√x−5) (a) Find the derivative of f. (b) Using the derivative...
Let f(x) = −3+(3x2 −x+1) ln(2√x−5) (a) Find the derivative of f. (b) Using the derivative and linear approximation, estimate f(9.1).
1. (a) Throughout Question 1 part (a), let f be the function given by f(x, y)...
1. (a) Throughout Question 1 part (a), let f be the function given by f(x, y) = 6+x^3+y^3−3xy. (i) At the point (0, 1), in what direction does the function f have the largest directional derivative? (ii) Find the directional derivative of the function f at the point (0, 1) in the direction of the vector [3, 4] . (iii) The function f has critical points at (0, 0) and at (1, 1). Classify the natures of these critical points...
Suppose that f is a differentiable function with derivative f" (x) = (x − 3)(x +...
Suppose that f is a differentiable function with derivative f" (x) = (x − 3)(x + 1)(x + 5). Determine the intervals of x for which the function of f is increasing and decreasing Explain why a positive value for f" (x) means the graph f(x) is increasing For f(x) = 2x2- − 3x2 − 12x + 21, find where f'(x) = 0, and the intervals on which the function increases and decreases Determine the values of a, b, and...
Let f be the periodic function defined by f(x) = 1 + x|x|, −1 < x...
Let f be the periodic function defined by f(x) = 1 + x|x|, −1 < x < 1, and f(x) = f(x + 2). Find the Fourier series of f.
Part A. If a function f has a derivative at x not. then f is continuous...
Part A. If a function f has a derivative at x not. then f is continuous at x not. (How do you get the converse?) Part B. 1) There exist an arbitrary x for all y (x+y=0). Is false but why? 2) For all x there exists a unique y (y=x^2) Is true but why? 3) For all x there exist a unique y (y^2=x) Is true but why?
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show...
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show that there exists a point c ∈ (0, 2π) such that cos(c)f(c) + sin(c)f'(c) = 2 sin(c).
let f be the function on [0,1] given by f(x) = 1 if x is different...
let f be the function on [0,1] given by f(x) = 1 if x is different of 1/2 and 2 if x is equal to 1/2 Prove that f is Riemann integrable and compute integral of f(x) dx from 0 to 1 Hint for each epsilon >0 find a partition P so that Up (f) - Lp (f) <= epsilon
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT