In: Finance
Consider the following table:
| Stock Fund | Bond Fund | ||
| Scenario | Probability | Rate of Return | Rate of Return | 
| Severe recession | 0.05 | −32% | −11% | 
| Mild recession | 0.25 | −12% | 17% | 
| Normal growth | 0.40 | 17% | 10% | 
| Boom | 0.30 | 22% | −7% | 
a. Calculate the values of mean return and
variance for the stock fund. (Do not round intermediate
calculations. Round "Mean return" value to 1 decimal place and
"Variance" to 2 decimal places.)  
| Mean return | % | |
| Variance | %-Squared | |
b. Calculate the value of the covariance between
the stock and bond funds.
a
| Stock | |||||
| Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (A)^2* probability | 
| Severe | 0.05 | -32 | -1.6 | -40.8 | 0.0083232 | 
| Recession | 0.25 | -12 | -3 | -20.8 | 0.010816 | 
| Normal | 0.4 | 17 | 6.8 | 8.2 | 0.0026896 | 
| Boom | 0.3 | 22 | 6.6 | 13.2 | 0.0052272 | 
| Expected return %= | sum of weighted return = | 8.8 | Sum=Variance Stock= | 0.02706=27.1% squared | 
b
| Bond | |||||
| Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (B)^2* probability | 
| Severe | 0.05 | -11 | -0.55 | -16.6 | 0.0013778 | 
| Recession | 0.25 | 17 | 4.25 | 11.4 | 0.003249 | 
| Normal | 0.4 | 10 | 4 | 4.4 | 0.0007744 | 
| Boom | 0.3 | -7 | -2.1 | -12.6 | 0.0047628 | 
| Expected return %= | sum of weighted return = | 5.6 | Sum=Variance Bond= | 0.01016 | |
| Standard deviation of Bond% | =(Variance)^(1/2) | 10.08 | |||
| Covariance Stock Bond: | |||||
| Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability | |
| Severe | 0.05 | -40.8 | -16.6 | 0.0033864 | |
| Recession | 0.25 | -20.8 | 11.4 | -0.005928 | |
| Normal | 0.4 | 8.2 | 4.4 | 0.0014432 | |
| Boom | 0.3 | 13.2 | -12.6 | -0.0049896 | |
| Covariance=sum= | -0.006088 | ||||
| Correlation A&B= | Covariance/(std devA*std devB)= | -0.36712 | |||