In: Finance
Consider the following table:
Stock Fund | Bond Fund | ||
Scenario | Probability | Rate of Return | Rate of Return |
Severe recession | 0.05 | −32% | −11% |
Mild recession | 0.25 | −12% | 17% |
Normal growth | 0.40 | 17% | 10% |
Boom | 0.30 | 22% | −7% |
a. Calculate the values of mean return and
variance for the stock fund. (Do not round intermediate
calculations. Round "Mean return" value to 1 decimal place and
"Variance" to 2 decimal places.)
Mean return | % | |
Variance | %-Squared | |
b. Calculate the value of the covariance between
the stock and bond funds.
a
Stock | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (A)^2* probability |
Severe | 0.05 | -32 | -1.6 | -40.8 | 0.0083232 |
Recession | 0.25 | -12 | -3 | -20.8 | 0.010816 |
Normal | 0.4 | 17 | 6.8 | 8.2 | 0.0026896 |
Boom | 0.3 | 22 | 6.6 | 13.2 | 0.0052272 |
Expected return %= | sum of weighted return = | 8.8 | Sum=Variance Stock= | 0.02706=27.1% squared |
b
Bond | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (B)^2* probability |
Severe | 0.05 | -11 | -0.55 | -16.6 | 0.0013778 |
Recession | 0.25 | 17 | 4.25 | 11.4 | 0.003249 |
Normal | 0.4 | 10 | 4 | 4.4 | 0.0007744 |
Boom | 0.3 | -7 | -2.1 | -12.6 | 0.0047628 |
Expected return %= | sum of weighted return = | 5.6 | Sum=Variance Bond= | 0.01016 | |
Standard deviation of Bond% | =(Variance)^(1/2) | 10.08 | |||
Covariance Stock Bond: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability | |
Severe | 0.05 | -40.8 | -16.6 | 0.0033864 | |
Recession | 0.25 | -20.8 | 11.4 | -0.005928 | |
Normal | 0.4 | 8.2 | 4.4 | 0.0014432 | |
Boom | 0.3 | 13.2 | -12.6 | -0.0049896 | |
Covariance=sum= | -0.006088 | ||||
Correlation A&B= | Covariance/(std devA*std devB)= | -0.36712 |