In: Statistics and Probability
Consider the following time series data.
| Quarter | Year | 1Year2 | Year 3 | ||||||||
| 1 | 4 | 6 | 7 | ||||||||
| 2 | 2 | 3 | 6 | ||||||||
| 3 | 3 | 5 | 6 | ||||||||
| 4 | 5 | 7 | 
 8 b.) Use the following dummy variables to develop an estimated
regression equation to account for any seasonal and linear trend
effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1
if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise (to 3
decimals if necessary). Compute the quarterly forecasts for next year (to 2 decimals). 
  | 
Result:
b.) Use the following dummy variables to develop an estimated
regression equation to account for any seasonal and linear trend
effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1
if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise (to 3
decimals if necessary).
Value = 3.147 +(-1)*Qtr1+(-3) *Qtr2+(-2)* Qtr3
+  1.625* t
Compute the quarterly forecasts for next year (to 2 decimals).
| 
 Quarter 1 forecast  | 
 8.92  | 
| 
 Quarter 2 forecast  | 
 6.92  | 
| 
 Quarter 3 forecast  | 
 7.92  | 
| 
 Quarter 4 forecast  | 
 9.92  | 
Recoded data
| 
 value  | 
 t  | 
 Qtr1  | 
 Qtr2  | 
 Qtr3  | 
| 
 4  | 
 1  | 
 1  | 
 0  | 
 0  | 
| 
 2  | 
 1  | 
 0  | 
 1  | 
 0  | 
| 
 3  | 
 1  | 
 0  | 
 0  | 
 1  | 
| 
 5  | 
 1  | 
 0  | 
 0  | 
 0  | 
| 
 6  | 
 2  | 
 1  | 
 0  | 
 0  | 
| 
 3  | 
 2  | 
 0  | 
 1  | 
 0  | 
| 
 5  | 
 2  | 
 0  | 
 0  | 
 1  | 
| 
 7  | 
 2  | 
 0  | 
 0  | 
 0  | 
| 
 7  | 
 3  | 
 1  | 
 0  | 
 0  | 
| 
 6  | 
 3  | 
 0  | 
 1  | 
 0  | 
| 
 6  | 
 3  | 
 0  | 
 0  | 
 1  | 
| 
 8  | 
 3  | 
 0  | 
 0  | 
 0  | 
| 
 Regression Analysis  | 
|||||||||
| 
 R²  | 
 0.959  | 
||||||||
| 
 Adjusted R²  | 
 0.936  | 
 n  | 
 12  | 
||||||
| 
 R  | 
 0.979  | 
 k  | 
 4  | 
||||||
| 
 Std. Error  | 
 0.469  | 
 Dep. Var.  | 
 value  | 
||||||
| 
 ANOVA table  | 
|||||||||
| 
 Source  | 
 SS  | 
 df  | 
 MS  | 
 F  | 
 p-value  | 
||||
| 
 Regression  | 
 36.1250  | 
 4  | 
 9.0313  | 
 41.01  | 
 .0001  | 
||||
| 
 Residual  | 
 1.5417  | 
 7  | 
 0.2202  | 
||||||
| 
 Total  | 
 37.6667  | 
 11  | 
|||||||
| 
 Regression output  | 
 confidence interval  | 
||||||||
| 
 variables  | 
 coefficients  | 
 std. error  | 
 t (df=7)  | 
 p-value  | 
 95% lower  | 
 95% upper  | 
|||
| 
 Intercept  | 
 3.4167  | 
 0.4284  | 
 7.975  | 
 .0001  | 
 2.4036  | 
 4.4297  | 
|||
| 
 t  | 
 1.6250  | 
 0.1659  | 
 9.794  | 
 2.45E-05  | 
 1.2327  | 
 2.0173  | 
|||
| 
 Qtr1  | 
 -1.0000  | 
 0.3832  | 
 -2.610  | 
 .0349  | 
 -1.9061  | 
 -0.0939  | 
|||
| 
 Qtr2  | 
 -3.0000  | 
 0.3832  | 
 -7.829  | 
 .0001  | 
 -3.9061  | 
 -2.0939  | 
|||
| 
 Qtr3  | 
 -2.0000  | 
 0.3832  | 
 -5.220  | 
 .0012  | 
 -2.9061  | 
 -1.0939  | 
|||
| 
 Predicted values for: value  | 
|||||||||
| 
 95% Confidence Intervals  | 
 95% Prediction Intervals  | 
||||||||
| 
 t  | 
 Qtr1  | 
 Qtr2  | 
 Qtr3  | 
 Predicted  | 
 lower  | 
 upper  | 
 lower  | 
 upper  | 
 Leverage  | 
| 
 4  | 
 1  | 
 0  | 
 0  | 
 8.917  | 
 7.904  | 
 9.930  | 
 7.414  | 
 10.419  | 
 0.833  | 
| 
 4  | 
 0  | 
 1  | 
 0  | 
 6.917  | 
 5.904  | 
 7.930  | 
 5.414  | 
 8.419  | 
 0.833  | 
| 
 4  | 
 0  | 
 0  | 
 1  | 
 7.917  | 
 6.904  | 
 8.930  | 
 6.414  | 
 9.419  | 
 0.833  | 
| 
 4  | 
 0  | 
 0  | 
 0  | 
 9.917  | 
 8.904  | 
 10.930  | 
 8.414  | 
 11.419  | 
 0.833  |