In: Finance
Compute the fair value of a chooser option which expires after n = 10n=10 periods. At expiration the owner of the chooser gets to choose (at no cost) a European call option or a European put option. The call and put each have strike K = 100K=100 and they mature 5 periods later, i.e. at n = 15n=15
Instructions: Quiz Instructions: Option Pricing in the Multi-Period Binomial Questions 1-8 should be answered by building a 15-period binomial model whose parameters should be calibrated to a Black-Scholes geometric Brownian motion model with: T = .25T=.25 years, S_{0} = 100S 0 =100, r = 2\%r=2%, \sigma = 30\%σ=30% and a dividend yield of c = 1\%.c=1%. Hint Your binomial model should use a value of u = 1.0395...u=1.0395.... (This has been rounded to four decimal places but you should not do any rounding in your spreadsheet calculations.) Submission Guidelines Round all your answers to 2 decimal places. So if you compute a price of 12.9876 you should submit an answer of 12.99.
Solution: p_chooser = 10.81245
chooser.p <- OptionPrice(100, mtrty = 0.25, prd = 15, r = 0.02, dvd = 0.01, sigma = 0.3, strike = 100, call = FALSE) chooser.c <- OptionPrice(100, mtrty = 0.25, prd = 15, r = 0.02, dvd = 0.01, sigma = 0.3, strike = 100) chooser <- pmax(chooser.c$Payoff, chooser.p$Payoff)[1:11, 1:11] r.real <- exp(0.02*0.25/10) discount(chooser[1:11,1:11], q = 0.49247, maturity = 0.25, r = r.real)
Output
> discount(chooser[1:11,1:11], q = 0.49247, maturity = 0.25, r = 0.02) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [1,] 10.81245 11.08461 12.324800 14.585646 17.809620 21.819826 26.368571 31.250030 36.394629 41.761927 47.343416 [2,] 0.00000 10.55546 9.888508 10.139137 11.466918 13.930107 17.420391 21.649281 26.278614 31.210502 36.373491 [3,] 0.00000 0.00000 11.209553 9.651811 8.857415 9.084352 10.552541 13.328428 17.171535 21.510333 26.221217 [4,] 0.00000 0.00000 0.000000 12.728436 10.428976 8.643030 7.665696 7.865955 9.608114 12.972762 16.953365 [5,] 0.00000 0.00000 0.000000 0.000000 14.968025 12.168778 9.597041 7.476415 6.180659 6.349616 9.118798 [6,] 0.00000 0.00000 0.000000 0.000000 0.000000 17.694042 14.672197 11.661045 8.738632 6.020775 3.666776 [7,] 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 20.637842 17.603637 14.504401 11.381583 8.308878 [8,] 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 23.595568 20.622473 17.544082 14.370588 [9,] 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 26.495943 23.623065 20.634933 [10,] 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 29.300977 26.538048 [11,] 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 32.001170