Question

In: Electrical Engineering

Electromagnetics Question B1. (a) A generator with Vg = 300 V, and Zg = 50 Ω...

Electromagnetics

Question B1.

(a) A generator with Vg = 300 V, and Zg = 50 Ω is connected to a load ZL =75 Ω through a 50-Ω lossless transmission line of length, l = 0.15λ. Determine the,

(i) Zin, the input impedance of the line at the generator end;

(ii) input current I i and voltage Vi ;

(iii) time-average power delivered to the line, = 0.5 x Re{V .I*};

(iv) load voltage VL, and current, IL; and

(v) the time-average power delivered to the load, = 0.5 x Re{VL .IL*};how does compare to ? Explain?

(vi) compute the time average power delivered by the generator, Pg , and the time average power dissipated in Zg . Is conservation of power satisfied?. [12 marks]

(b) A team of scientists is designing a radar as a probe for measuring the depth of the ice layer over the antarctic land mass. In order to measure a detectable echo due to the reflection by the ice-rock boundary, the thickness of the ice sheet should not exceed three skin depths. If ε' = 3 a n d ε'' = 10-2 for ice and if the maximum anticipated ice thickness in the area under exploration is 1.2 km, what frequency range is useable with the radar? [6 marks]

(c) A 0.5-MHz antenna carried by an airplane flying over the ocean surface generates a wave that approaches the water surface in the form of a normally incident plane wave with an electricfield amplitude of 3,000 (V/m). Sea water is characterized by μr = 1, εr = 72, and σ = 4 S/m. The plane is trying to communicate a message to a submarine submerged at a depth d below the water surface. The submarine’s receiver requires a minimum signal of 0.01 μV/m amplitude, what is the maximum depth d to which successful communication is still possible? [7 marks]

Solutions

Expert Solution

Please find below attachment of solution

Post next question separately I will definitely answer


Related Solutions

A 325 V sinusoidal voltage generator at 50 Hz supplies a load modelled by a 35...
A 325 V sinusoidal voltage generator at 50 Hz supplies a load modelled by a 35  resistance in series with a 95.5 mH inductor. The loss of the transmission line between the generator and the load is modelled by a series resistance of 5 . Calculate the average, reactive and apparent power a) consumed by the generator, b) consumed by the load. Determine the power factor at which the load is operating. Please outline the method clearly. Answers should...
Two blocks in a system (b1 & b2) collide inelastically where b1 has a velocity (v)...
Two blocks in a system (b1 & b2) collide inelastically where b1 has a velocity (v) and a small mass (m) and b2 is stationary with a large mass (M). b2 can absorb some of the collision similar to a spring that does not recoil with a stiffness of (k). When the blocks collide they will stick together. The plane that the blocks are moving on is horizontal and frictionless. 1)Find the change in internal energy (delta U) 2)If all...
Two resistors 30 Ω and 50 Ω are connected in parallel and this parallel arrangement is...
Two resistors 30 Ω and 50 Ω are connected in parallel and this parallel arrangement is then connected in series with two resistors 20 Ω each. The combination is placed across a 10V potential difference. Hence construct the diagram of the above circuit. According to your observation evaluate the total current in the circuit and also the total power delivered to the resistors and also show that the total power dissipated is equal to the sum of the power dissipated...
Assume a transmission line with ZL = 100 − j25 Ω and Z0 = 50 Ω....
Assume a transmission line with ZL = 100 − j25 Ω and Z0 = 50 Ω. Using the smith chart, find i) the normalised load impedance; ii) the corresponding reflection coefficient; iii) the standing wave ratio; iv) the distance between the load and the first voltage maximum; v) the distance between the load and the first voltage minimum; vi) the normalised admittance; vii) the input impedance at 0.2λ from the load. (Show all steps on the Smith chart)
(Use Smith Chart) A 50 Ω line is terminated by a 75 Ω resistor. The input...
(Use Smith Chart) A 50 Ω line is terminated by a 75 Ω resistor. The input terminals are connected to the output terminals of a 30 Ω line. Both lines are 0.12 λ long. a. Find Zin and Γin at the input of the 30 Ω line b. SWR values on both lines Use Smith Chart
A 2000 v signle phase synchorunus generator isbeing used as a backup generator outside a diagnostic...
A 2000 v signle phase synchorunus generator isbeing used as a backup generator outside a diagnostic center in Islamabad . when the generator terminals are short circuited and a field exication current if 2.5 A is passed, the ammeter between the terminals read 100 A of full load current . if this terminals of the same generator are opened and the voltage across them is measured using a voltmeter , we get the value of 500V with the same exciatation...
A 2000 V single-phase synchronous generator is being used as a backup generator outside a diagnostic...
A 2000 V single-phase synchronous generator is being used as a backup generator outside a diagnostic center. When the generator terminals are short-circuited and a field excitation current of 2.5 A is passed, the ammeter between the terminals read 100 A of full load current. If the terminals of the same generator are opened and the voltage across them is measured using a voltmeter, we get the value of 500 V with the same excitation current. The armature resistance is...
A 480 V, 50 Hz, Y-connected six-pole synchronous generator has a per-phase synchronous reactance of 1.0...
A 480 V, 50 Hz, Y-connected six-pole synchronous generator has a per-phase synchronous reactance of 1.0 Ω. Its full-load armature current is 60 A at 0.8 PF lagging. Its friction and windage losses are 1.5 kW and core losses are 1.0 kW at 60 Hz at full load. Assume that the armature resistance (and, therefore, the I2R losses) can be ignored. The field current has been adjusted such that the no-load terminal voltage is 480 V. a. What is the...
The output voltage of an AC generator is given by ?v = 121 V sin (32?t)....
The output voltage of an AC generator is given by ?v = 121 V sin (32?t). The generator is connected across a 0.007 H inductor. Find the following. (a) frequency of the generator?=____ Hz (b) rms voltage across the inductor?=____ V (c) inductive reactance?=____ ohms (d) rms current in the inductor?=____ A (e) maximum current in the inductor?=____ A (f) average power delivered to the inductor?=____ W (g) Find an expression for the instantaneous current. (Use the following as necessary:...
A 32.0-μF capacitor is connected to a 53.0-Ω resistor and a generator whose rms output is...
A 32.0-μF capacitor is connected to a 53.0-Ω resistor and a generator whose rms output is 30.0 V at 60.0 Hz. (a) Find the rms current in the circuit. ______ A (b) Find the rms voltage drop across the resistor. ______ V (c) Find the rms voltage drop across the capacitor. _______ V (d) Find the phase angle for the circuit. The voltage _______ leads ahead of lags behind the current by _____°.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT