Question

In: Physics

A charge of q1 = 4.0µC is at the origin and a charge q2 = 2.0µC...

A charge of q1 = 4.0µC is at the origin and a charge q2 = 2.0µC is at x = −10m along the x-axis. What is the magnitude and direction of the force on a charge, q0 = 2.0µC, at x = 0m, y = 1m, due to q1 and q2?

Solutions

Expert Solution


Related Solutions

A charge Q1 = +9μC is located at the origin and a second charge Q2 =...
A charge Q1 = +9μC is located at the origin and a second charge Q2 = -4μC is placed at x = 8 m. What will be the force (magnitude and direction) if you place a +16 μC charge midway between the Q1 and Q2? 1?= 10^-6, Coulomb’s constant ?=9.0*10^9 N*m^2/C^2 Calculate the net electric field (magnitude and direction) at x = 10 m due to the two charges Q1 and Q2 given above. What is the force on an...
Charge q1= +0.225 nC is at the origin. Charge q2 = -0.913 nC is at y=...
Charge q1= +0.225 nC is at the origin. Charge q2 = -0.913 nC is at y= +2.44 cm. What is the magnitude and direction of the acceleration felt by an electron at x = +4.15 cm?
Q1 is a -50 µC charge is located at the origin. Q2 is a +20 µC...
Q1 is a -50 µC charge is located at the origin. Q2 is a +20 µC charge is located on the y axis at y = 4 m. Consider a point P located on the x axis at x = 2 m.What is the magnitude of electric field due to Q1 at the point P?What are the x and y components of the electric field due to Q1 at the point P? Be sure to include direction.What is the magnitude...
A point charge q1=8.60 nC is fixed at the origin. A second point charge q2= 5.30...
A point charge q1=8.60 nC is fixed at the origin. A second point charge q2= 5.30 nC is fixed at the point x= 10 cm. a) find the electric potential at point A, located xa= 14.0 cm b) find the total electric field (magnitude and direction) at point B, located xb= 6.0 cm
Q4. A positive charge q1 = 1.0 nC is located at origin, another negative charge q2...
Q4. A positive charge q1 = 1.0 nC is located at origin, another negative charge q2 = -16 nC is location at (20 cm, 0). At which location/locations along the x-axis is the net electric field is zero? Draw a diagram and clearly show all the work. Q5. A positive charge q1 = 1.0 nC is located at origin, another positive charge q2 = 16 nC is location at (20 cm, 0). At which location/locations along the x-axis is the...
Q4. A positive charge q1 = 1.0 nC is located at origin, another negative charge q2...
Q4. A positive charge q1 = 1.0 nC is located at origin, another negative charge q2 = -16 nC is location at (20 cm, 0). At which location/locations along the x-axis is the net electric field is zero? Draw a diagram and clearly show all the work. Q5. A positive charge q1 = 1.0 nC is located at origin, another positive charge q2 = 16 nC is location at (20 cm, 0). At which location/locations along the x-axis is the...
A charge q1=4.10 mCis located at the origin of a coordinate system. Another charge q2=4.80 mC...
A charge q1=4.10 mCis located at the origin of a coordinate system. Another charge q2=4.80 mC is located at x=-1.70 m and y=-4.50 m, and another q3=4.20 mC is located at x=-2.30 m and y=1.20 m. Calculate the magnitude of the net electric force on the charge q1 in Newtons (N).
. Charge q1= 1.80*10-8 C is placed at the origin O. Charge q2 = -7.20*10-8 C...
. Charge q1= 1.80*10-8 C is placed at the origin O. Charge q2 = -7.20*10-8 C is placed at point A ( x =0.180 m) as shown in the figures. a. A charge q3 = 2.5 *10^-8 C is placed at point B ( x = 0.0900 m) as shown in fig.a. Determine the net force F3 exerted on charge q3 by q1 and q2. Give your answer unit vector notation. b. The charge q3 is now placed at point...
A particle of charge -q1 is at the origin of an x axis. (a) At what...
A particle of charge -q1 is at the origin of an x axis. (a) At what location on the axis should a particle of charge -36q1 be placed so that the net electric field is zero at x = 4.8 mm on the axis? (b) If, instead, a particle of charge +36q1 is placed at that location, what is the direction (relative to the positive direction of the x axis) of the net electric field at x = 4.8 mm?
Let: q1 = +A μC q2 = +B μC , at the origin , B meters...
Let: q1 = +A μC q2 = +B μC , at the origin , B meters to the right of the origin , A meters above q2 , A meters above the origin q3 = -A*B μC q4 = -B/A μC A = 4 B= 5 where: Find the magnitude and direction of the total electric force and total electric field at q3. Let: q1 = +4 μC , at the origin q2 = +5 μC, 5 meters to the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT