Question

In: Physics

Let: q1 = +A μC q2 = +B μC , at the origin , B meters...

Let: q1 = +A μC q2 = +B μC
, at the origin
, B meters to the right of the origin , A meters above q2
, A meters above the origin
q3 = -A*B μC
q4 = -B/A μC
A = 4
B= 5
where:
Find the magnitude and direction of the total electric force and total electric field at q3.


Let:
q1 = +4 μC , at the origin
q2 = +5 μC, 5 meters to the right of the origin
q3 = -20 μC , 4 meters above q2
q4 = -1.25 μC , 4 meters above the origin

Find the magnitude and direction of the total electric force and total electric field at q3.


Solutions

Expert Solution


Related Solutions

1.) Two charges, q1 = -16.5 μC and q2 = 13.5 μC , are located at...
1.) Two charges, q1 = -16.5 μC and q2 = 13.5 μC , are located at (x,y) = (12.4, 21.2) cm and (19.6, 24.0) cm respectively. Find the electrostatic force between these two changes (take an attractive force to be negative) 2.)Two charges, q1 =-16.1 μC and q2 = 11.9 μC , are located along a straight line at x = 19.5 cm and 57.5 cm respectively. What is the electric field at a point P located at x =...
Two point charges, Q1 = 3.0 μC and Q2 = -1.7 μC , are placed on...
Two point charges, Q1 = 3.0 μC and Q2 = -1.7 μC , are placed on the x axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 3.0 cm. At what point(s) along the x axis is the electric field zero? Determine the x-coordinate(s) of the point(s). Express your answer using two significant figures. If there is more than one answer, enter your answers in ascending order separated by commas....
Two charges, q1 = 5 μC and q2 = 7 μC, are separated by 25 cm....
Two charges, q1 = 5 μC and q2 = 7 μC, are separated by 25 cm. Where should a third charge be placed on the line between them such that the resultant force on it will be zero? Does it matter if the third charge is positive or negative?
4) There are two charges q1 = 35 μC and q2 = 50 μC placed 0.5...
4) There are two charges q1 = 35 μC and q2 = 50 μC placed 0.5 m apart and fixed in place. Where should the charge q3 = 15 μC be placed so that it experiences no force on it? 5) Suppose Earth and the Moon each carried a net negative charge −Q. Approximate both bodies as point masses and point charges. (a) What value of Q is required to balance the gravitational attraction between Earth and the Moon? (b)...
Two charges, q1 = 32 μC and q2 = 38 μC, are located along a straight...
Two charges, q1 = 32 μC and q2 = 38 μC, are located along a straight line at x = 22 cm and 38 cm respectively. Where along the x-axis should a third charge q3 with a charge of 1 μC be located such that the net force on this charge is zero. Two charges, q1 = 10.5 μC and q2 = -4.5 μC , are located at coordinates (x,y) = (21.6, 8.6) cm and (23.0, 10.6) cm respectively. Find...
Three point electric charges of magnitude Q1=2.0 μC, Q2= -1.0 μC, and Q3= 2.0 μC are...
Three point electric charges of magnitude Q1=2.0 μC, Q2= -1.0 μC, and Q3= 2.0 μC are situated in a straight line in air 10 cm apart (the negative charge is in the middle). Determine the of the force of each charge on the other two.
1) Two particles with charges q1 = -6 μC and q2 = 2 μC, respectively, situated...
1) Two particles with charges q1 = -6 μC and q2 = 2 μC, respectively, situated at corners of a rectangle of sides a = 10 m and b = 20 m. What Is The Electric Potential At The Corner with the right angle 2) Two particles with charges q1 = 6 C and q2 = -2 C, respectively, situated at corners of a rectangle of sides a = 10 m and b = 20 m. What Is The Electric...
Three point-like charges: q1=9.8 μC, q2=4.8 μC and q3=-9.6 μC, are positioned at the corners of...
Three point-like charges: q1=9.8 μC, q2=4.8 μC and q3=-9.6 μC, are positioned at the corners of an equilateral triangle with side length L= 3.9 cm shown in the figure below. Find electrostatic forces F1, F2 and F3 exerted on each of the respective charges in terms of their components with respect to shown axes: F1x= ___N,   F1y= ___N. F2x= ___N, F2y= ___ N. F3x= ___ N, F3y= ___ N. Check if your numerical results (at least approximately) agree with the...
A point charge q2 = -1.9 μC is fixed at the origin of a co-ordinate system...
A point charge q2 = -1.9 μC is fixed at the origin of a co-ordinate system as shown. Another point charge q1 = 4.5 μC is is initially located at point P, a distance d1 = 6.6 cm from the origin along the x-axis 1) What is ΔPE, the change in potenial energy of charge q1 when it is moved from point P to point R, located a distance d2 = 2.6 cm from the origin along the x-axis as...
A point charge q2 = -3.9 μC is fixed at the origin of a co-ordinate system...
A point charge q2 = -3.9 μC is fixed at the origin of a co-ordinate system as shown. Another point charge q1 = 4.5 μC is is initially located at point P, a distance d1 = 8.2 cm from the origin along the x-axis Point R located at d2 = 3.3 cm The charge q2 is now replaced by two charges q3 and q4 which each have a magnitude of -1.95 μC, half of that of q2. The charges are...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT