In: Computer Science
Using Java please implement a 4x4 Tic-Tac-Toe with Minimax with alpha-beta pruning. Please comment code heavily so I can follow along and understand the steps. Also, inlcude a screenshot of the final output. Do not include code for GUI, a GUI is not needed. Thank you
The recursive algorithm for "minimax with alpha-beta pruning" is as follows:
minimax(level, player, alpha, beta) // player may be "computer" or "opponent"
if (gameover || level == 0)
return score
children = all valid moves for this "player"
if (player is computer, i.e., max's turn)
// Find max and store in alpha
for each child
score = minimax(level - 1, opponent, alpha, beta)
if (score > alpha) alpha = score
if (alpha >= beta) break; // beta cut-off
return alpha
else (player is opponent, i.e., min's turn)
// Find min and store in beta
for each child
score = minimax(level - 1, computer, alpha, beta)
if (score < beta) beta = score
if (alpha >= beta) break; // alpha cut-off
return beta
// Initial call with alpha=-inf and beta=inf
minimax(2, computer, -inf, +inf)
The relevant changes (over the
AIPlayerMinimax.java) are:
/** Get next best move for computer. Return int[2] of {row, col} */
@Override
int[] move() {
int[] result = minimax(2, mySeed, Integer.MIN_VALUE, Integer.MAX_VALUE);
// depth, max-turn, alpha, beta
return new int[] {result[1], result[2]}; // row, col
}
/** Minimax (recursive) at level of depth for maximizing or minimizing player
with alpha-beta cut-off. Return int[3] of {score, row, col} */
private int[] minimax(int depth, Seed player, int alpha, int beta) {
// Generate possible next moves in a list of int[2] of {row, col}.
List<int[]> nextMoves = generateMoves();
// mySeed is maximizing; while oppSeed is minimizing
int score;
int bestRow = -1;
int bestCol = -1;
if (nextMoves.isEmpty() || depth == 0) {
// Gameover or depth reached, evaluate score
score = evaluate();
return new int[] {score, bestRow, bestCol};
} else {
for (int[] move : nextMoves) {
// try this move for the current "player"
cells[move[0]][move[1]].content = player;
if (player == mySeed) { // mySeed (computer) is maximizing player
score = minimax(depth - 1, oppSeed, alpha, beta)[0];
if (score > alpha) {
alpha = score;
bestRow = move[0];
bestCol = move[1];
}
} else { // oppSeed is minimizing player
score = minimax(depth - 1, mySeed, alpha, beta)[0];
if (score < beta) {
beta = score;
bestRow = move[0];
bestCol = move[1];
}
}
// undo move
cells[move[0]][move[1]].content = Seed.EMPTY;
// cut-off
if (alpha >= beta) break;
}
return new int[] {(player == mySeed) ? alpha : beta, bestRow, bestCol};
}
}