Question

In: Advanced Math

Diagonalize the matrix (That is, find a diagonal matrix D and an invertible matrix P such...

Diagonalize the matrix (That is, find a diagonal matrix D and an invertible matrix P such that

A=PDP−1.

(Do not find the inverse of P). Describe all eigenspaces of A and state the geometric and algebraic multiplicity of each eigenvalue.

A=

-1 3 0
-4 6 0
0 0 1

Solutions

Expert Solution


Related Solutions

(2) A matrix A is given. Find, if possible, an invertible matrix P and a diagonal...
(2) A matrix A is given. Find, if possible, an invertible matrix P and a diagonal matrix D such that P −1AP = D. Otherwise, explain why A is not diagonalizable. (a) A =   −3 0 −5                 0 2 0                 2 0 3 (b) A =   2 0 −1              1 3 −1              2 0 5 (c) A = 1 −1 2              −1 1 2               2 2 2
For the matrix A, find (if possible) a nonsingular matrix P such that P−1AP is diagonal....
For the matrix A, find (if possible) a nonsingular matrix P such that P−1AP is diagonal. (If not possible, enter IMPOSSIBLE.) A = 2 −2 3 0 3 −2 0 −1 2 P = Verify that P−1AP is a diagonal matrix with the eigenvalues on the main diagonal. P−1AP =
Orthogonally diagonalize the matrix by finding an orthogonal matrix Q and a diagonal matrix D such...
Orthogonally diagonalize the matrix by finding an orthogonal matrix Q and a diagonal matrix D such that QTAQ = D. (Enter each matrix in the form [[row 1], [row 2], ...], where each row is a comma-separated list.) A = 5 0 0 0 1 3 0 3 1 (D, Q) = $$ Incorrect: Your answer is incorrect. Submission 2(0/1 points)Monday, November 25, 2019 10:01 PM CST Orthogonally diagonalize the matrix by finding an orthogonal matrix Q and a diagonal...
P.0.2 Show that (a) the diagonal entries of a Hermitian matrix are real; (b) the diagonal...
P.0.2 Show that (a) the diagonal entries of a Hermitian matrix are real; (b) the diagonal entries of a skew-Hermitian matrix purely imaginary; c) the diagonal entries of a skew-symmetric matrix are zero. P.0.5 Let A ∈ Mn be invertible. Use mathematical induction to prove that (A-1)k = (Ak)-1 for all integers k. P.0.25 Let A ∈ Mn be idempotent. Show that A is invertible if and only if A = I P.0.26 Let A,B ∈ Mn be idempotent. Show...
Let A be a diagonalizable n × n matrix and let P be an invertible n...
Let A be a diagonalizable n × n matrix and let P be an invertible n × n matrix such that B = P−1AP is the diagonal form of A. Prove that Ak = PBkP−1, where k is a positive integer. Use the result above to find the indicated power of A. A = 6 0 −4 7 −1 −4 6 0 −4 , A5 A5 =
Let A be a diagonalizable n × n matrix and let P be an invertible n...
Let A be a diagonalizable n × n matrix and let P be an invertible n × n matrix such that B = P−1AP is the diagonal form of A. Prove that Ak = PBkP−1, where k is a positive integer. Use the result above to find A5 A = 4 0 −4 5 −1 −4 6 0 −6
Exercise 2.1.39 Let A be a 2×2 invertible matrix, with A = [a b c d]...
Exercise 2.1.39 Let A be a 2×2 invertible matrix, with A = [a b c d] Find a formula for A−1 in terms of a,b, c,d by using elementary row operations
Consider an orthogonal matrix Q ∈ R ^m×m and a diagonal matrix with non-zero diagonal elements...
Consider an orthogonal matrix Q ∈ R ^m×m and a diagonal matrix with non-zero diagonal elements D ∈ R^ m×m and answer the True— False questions below. (k) Any vector x ∈ R^m can be written as a linear combination of the columns of D (l) The columns of Q span R^m (m) The columns of D span R^m (n) The columns of Q are a basis for R^m (o) The columns of D are a basis for R^m
Find the matrix P that diagonalizes A, and check your work by computer P^-1AP. This matrix...
Find the matrix P that diagonalizes A, and check your work by computer P^-1AP. This matrix is [-14 12] [-20 17] I've tried this problem, and I keep getting the eigenvalues of λ=1, 2 and the eigenspace [4 5] for λ=1, and eigenspace [3 4] for λ=2. However, whenever I check it with P^-1AP, it doesn't produce a diagonal matrix.
Prove: An (n × n) matrix A is not invertible ⇐⇒ one of the eigenvalues of...
Prove: An (n × n) matrix A is not invertible ⇐⇒ one of the eigenvalues of A is λ = 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT