In: Statistics and Probability
The following data was collected to explore how the number of square feet in a house, the number of bedrooms, and the age of the house affect the selling price of the house. The dependent variable is the selling price of the house, the first independent variable (x1x1) is the square footage, the second independent variable (x2x2) is the number of bedrooms, and the third independent variable (x3x3) is the age of the house.
Square Feet | Number of Bedrooms | Age | Selling Price |
---|---|---|---|
29732973 | 55 | 1515 | 306000306000 |
27552755 | 55 | 1313 | 305500305500 |
26672667 | 44 | 1313 | 303900303900 |
26172617 | 44 | 1111 | 284500284500 |
23642364 | 44 | 99 | 276000276000 |
18881888 | 44 | 88 | 197000197000 |
16861686 | 33 | 77 | 188700188700 |
13651365 | 22 | 77 | 155700155700 |
10801080 | 22 | 22 | 131900131900 |
Copy Data
Step 1 of 2 :
Find the p-value for the regression equation that fits the given data. Round your answer to four decimal places
Following is the output of multiple regression:
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.992544802 | |||||
R Square | 0.985145184 | |||||
Adjusted R Square | 0.976232295 | |||||
Standard Error | 10800.76263 | |||||
Observations | 9 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 3 | 38682257633 | 12894085878 | 110.5303932 | 5.44981E-05 | |
Residual | 5 | 583282367 | 116656473.4 | |||
Total | 8 | 39265540000 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 8935.956631 | 15765.18291 | 0.566815918 | 0.595336925 | -31589.73618 | 49461.64945 |
Square Feet, X1 | 147.9881484 | 26.45186106 | 5.594621418 | 0.002518853 | 79.99147489 | 215.984822 |
Number of Bedrooms, X2 | -13021.82567 | 9668.01786 | -1.346897147 | 0.235837767 | -37874.25676 | 11830.60541 |
Age, X3 | -4373.335306 | 3288.31236 | -1.329963467 | 0.240968191 | -12826.21133 | 4079.540713 |
The p-value of F statistics is: 0.0001