Question

In: Advanced Math

In a model of a hypothetical chemical oscillator, the dimensionless concentrations x, y>=0 evolve over time...

In a model of a hypothetical chemical oscillator, the dimensionless concentrations x, y>=0 evolve over time according to
dy /dx=1-(b+1)x+ax^2y
dx/dy=bx-ax^2y
where a, b>0 are parameters
a) Find all the fixed points, and perform their linear stability analysis.
b) Show that a Hopf bifurcation occurs at some parameter value b=b_c where b_c is to be determined.

Solutions

Expert Solution


Related Solutions

Find y as a function of x if y′′′+25y′=0 y(0)=2,  y′(0)=20,  y′′(0)=−100 y(x)=
Find y as a function of x if y′′′+25y′=0 y(0)=2,  y′(0)=20,  y′′(0)=−100 y(x)=
static int product(int x,int y){ if(x==0||y==0){//checking if x or y is 0 return 0;//if x or...
static int product(int x,int y){ if(x==0||y==0){//checking if x or y is 0 return 0;//if x or y is 0, then the return value and x*y will be zero. }else if(y<0&&x<0){ x=-x;//Changing the sign of x y=-y;//Changing the sign of y }else if(x>=1){ return (y+product(x-1,y)); } return (x+product(x,y-1)); } find the space complexity and the time complexity of the above algorithm.
y''(t)+(x+y)^2*y(t)=sin(x*t+y*t)-sin(x*t-y*t), y(0)=0, y'(0)=0, x and y are real numbers
y''(t)+(x+y)^2*y(t)=sin(x*t+y*t)-sin(x*t-y*t), y(0)=0, y'(0)=0, x and y are real numbers
Solve the IVP using Laplace transforms x' + y'=e^t -x''+3x' +y =0 x(0)=0, x'(0)=1, y(0)=0
Solve the IVP using Laplace transforms x' + y'=e^t -x''+3x' +y =0 x(0)=0, x'(0)=1, y(0)=0
Solve the following differential equations: 1.) y"(x)+ y(x)=4e^x ; y(0)=0, y'(0)=0 2.) x"(t)+3x'(t)+2x(t)=4t^2 ; x(0)=0, x'(0)=0
Solve the following differential equations: 1.) y"(x)+ y(x)=4e^x ; y(0)=0, y'(0)=0 2.) x"(t)+3x'(t)+2x(t)=4t^2 ; x(0)=0, x'(0)=0
a) y''(x)-3y'(x)=8e3x+4sinx b) y''(x)+y'(x)+y(x)=0 c) y(iv)(x)+2y''(x)+y(x)=0
a) y''(x)-3y'(x)=8e3x+4sinx b) y''(x)+y'(x)+y(x)=0 c) y(iv)(x)+2y''(x)+y(x)=0
For a trait to evolve (change) over time, what is the prerequisite that must be met?...
For a trait to evolve (change) over time, what is the prerequisite that must be met? a) All individuals must be homozygous at the genes responsible. b) There must be heritable variability. c) Competition must be momentarily relaxed. d) Individuals must strive to change the trait during their lifetime.
f(x,y)=3(x+y) 0<x+y<1, 0<x<1, 0<y<1 (a) E(xy|x)=? (b) Cov(x,y)=? (c) x and y is independent? thank you!
f(x,y)=3(x+y) 0<x+y<1, 0<x<1, 0<y<1 (a) E(xy|x)=? (b) Cov(x,y)=? (c) x and y is independent? thank you!
Find y as a function of x if y′′′−16y′′+63y′=144ex, y(0)=16, y′(0)=11, y′′(0)=15. y(x)=
Find y as a function of x if y′′′−16y′′+63y′=144ex, y(0)=16, y′(0)=11, y′′(0)=15. y(x)=
Solve x′=x−8y, y′=x−3y, x(0)=2, y(0)=1
Solve x′=x−8y, y′=x−3y, x(0)=2, y(0)=1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT