Question

In: Advanced Math

In a model of a hypothetical chemical oscillator, the dimensionless concentrations x, y>=0 evolve over time...

In a model of a hypothetical chemical oscillator, the dimensionless concentrations x, y>=0 evolve over time according to
dy /dx=1-(b+1)x+ax^2y
dx/dy=bx-ax^2y
where a, b>0 are parameters
a) Find all the fixed points, and perform their linear stability analysis.
b) Show that a Hopf bifurcation occurs at some parameter value b=b_c where b_c is to be determined.

Solutions

Expert Solution


Related Solutions

Find y as a function of x if y′′′+25y′=0 y(0)=2,  y′(0)=20,  y′′(0)=−100 y(x)=
Find y as a function of x if y′′′+25y′=0 y(0)=2,  y′(0)=20,  y′′(0)=−100 y(x)=
static int product(int x,int y){ if(x==0||y==0){//checking if x or y is 0 return 0;//if x or...
static int product(int x,int y){ if(x==0||y==0){//checking if x or y is 0 return 0;//if x or y is 0, then the return value and x*y will be zero. }else if(y<0&&x<0){ x=-x;//Changing the sign of x y=-y;//Changing the sign of y }else if(x>=1){ return (y+product(x-1,y)); } return (x+product(x,y-1)); } find the space complexity and the time complexity of the above algorithm.
y''(t)+(x+y)^2*y(t)=sin(x*t+y*t)-sin(x*t-y*t), y(0)=0, y'(0)=0, x and y are real numbers
y''(t)+(x+y)^2*y(t)=sin(x*t+y*t)-sin(x*t-y*t), y(0)=0, y'(0)=0, x and y are real numbers
Solve the IVP using Laplace transforms x' + y'=e^t -x''+3x' +y =0 x(0)=0, x'(0)=1, y(0)=0
Solve the IVP using Laplace transforms x' + y'=e^t -x''+3x' +y =0 x(0)=0, x'(0)=1, y(0)=0
Solve the following differential equations: 1.) y"(x)+ y(x)=4e^x ; y(0)=0, y'(0)=0 2.) x"(t)+3x'(t)+2x(t)=4t^2 ; x(0)=0, x'(0)=0
Solve the following differential equations: 1.) y"(x)+ y(x)=4e^x ; y(0)=0, y'(0)=0 2.) x"(t)+3x'(t)+2x(t)=4t^2 ; x(0)=0, x'(0)=0
a) y''(x)-3y'(x)=8e3x+4sinx b) y''(x)+y'(x)+y(x)=0 c) y(iv)(x)+2y''(x)+y(x)=0
a) y''(x)-3y'(x)=8e3x+4sinx b) y''(x)+y'(x)+y(x)=0 c) y(iv)(x)+2y''(x)+y(x)=0
f(x,y)=3(x+y) 0<x+y<1, 0<x<1, 0<y<1 (a) E(xy|x)=? (b) Cov(x,y)=? (c) x and y is independent? thank you!
f(x,y)=3(x+y) 0<x+y<1, 0<x<1, 0<y<1 (a) E(xy|x)=? (b) Cov(x,y)=? (c) x and y is independent? thank you!
Find y as a function of x if y′′′−16y′′+63y′=144ex, y(0)=16, y′(0)=11, y′′(0)=15. y(x)=
Find y as a function of x if y′′′−16y′′+63y′=144ex, y(0)=16, y′(0)=11, y′′(0)=15. y(x)=
Solve x′=x−8y, y′=x−3y, x(0)=2, y(0)=1
Solve x′=x−8y, y′=x−3y, x(0)=2, y(0)=1
Find y as a function of x if y''''−4y'''+4y''=−128e^{-2x} y(0)=2,  y′(0)=9,  y″(0)=−4,  y‴(0)=16. y(x)=?
Find y as a function of x if y''''−4y'''+4y''=−128e^{-2x} y(0)=2,  y′(0)=9,  y″(0)=−4,  y‴(0)=16. y(x)=?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT