Question

In: Economics

The local steel market has an inverse demand function for a metric ton of steel: P...

The local steel market has an inverse demand function for a metric ton of steel:

P = 1450 – Q

Donald and Justin are the only two steel miners in the market who sell metric tons of steel. They both have a constant marginal and average cost of $100 per metric ton. Both farmers simultaneously determine the quantity of steel they are going to bring to the market. They do not confer beforehand, and the price is determined by the market after they arrive at the steel exchange market.

a. What are Donald and Justin’s best response functions?  

b. What are the Cournot equilibrium quantities and the market price?

c. What would be the price that Donald and Justin would charge if they choose to collude?  

d. Will the collusion agreement last? Why or why not? (be sure to show your reasoning in your analysis)  

e. Explain in detail how a monopolistically competitive firm can set its price greater than the marginal cost.  

Solutions

Expert Solution


Related Solutions

A steel mill in Canada has inverse demand function p = 100 – q (so its...
A steel mill in Canada has inverse demand function p = 100 – q (so its revenue function is given by R = 100q – q2) and cost function is C = 80 + 4q. a) What is the firm’s output under each of the following three regimes? i) Profit maximization. ii) Revenue maximization. iii) Output maximization subject to nonnegative revenue. b) If MC = 0, which of the above three regimes (profit-maximizing, revenue-maximizing or output maximizing) is likely to...
The average consumer at a firm with market power has an inverse demand function of P...
The average consumer at a firm with market power has an inverse demand function of P = 10 – Q, and the firm's cost function is TC = 2Q. Assume the firm engages in two-part pricing. a. What is the optimal fixed fee to charge each consumer? b. What is the optimal price to charge a consumer for each unit purchased? c. How do the firm’s profits arising from two-part pricing compare to profits arising from the optimal single price?
Consider the market for toothbrushes. Inverse market demand for toothbrushes is described by the function: P...
Consider the market for toothbrushes. Inverse market demand for toothbrushes is described by the function: P = 8 − Q Inverse market supply of toothbrushes is described by the function: P = Q Suppose that fresh breath benefits everyone, as a result the market for toothbrushes generates a positive externality, where the external benefit is $2 per toothbrush. Without government intervention this market will produce (A) 2 fewer (B) 1 more (C) 2 more (D) 1 fewer toothbrushes than is...
Refer to a duopoly market in which the inverse demand function is given by P =...
Refer to a duopoly market in which the inverse demand function is given by P = 96 − Q. Firm 1's cost function is c(q1) = 6q1 + 300, and firm 2's cost function is c(q2) = 6q2 + 600 (such that each firm has MC = 6). Q1: The outputs of the two firms in Cournot-Nash equilibrium will be: 1) q1 = 45 and q2 = 0. 2) q1 = 30 and q2 = 30. 3) q1 = 45...
Refer to a duopoly market in which the inverse demand function is given by P =...
Refer to a duopoly market in which the inverse demand function is given by P = 96 − Q. Firm 1's cost function is c(q1) = 6q1 + 0.5q12, and firm 2's cost function is c(q2) = 6q2 + 0.5q22 (such that each firm has MC = 6 + q). Q1: The Cournot best-response function for firm 1 will be: 1) q1 = 22.5 − q2/4 2) q1 = 30 − q2/3 3) q1 = 45 − q2/2 4) q1...
The inverse demand function for diamonds is P = 1500 − 2Q. The market for diamonds...
The inverse demand function for diamonds is P = 1500 − 2Q. The market for diamonds consists of two firms, Shiny and Dull. Shinys cost function is c(q) = 300q + 5,000 and Dulls cost function is c(q) = 300q + 10,000/4. Which of the following statements is true? ANS is E) but please show the working out (a) Cournot equilibrium total output is 400. Stackelberg eq. total output is 300. (b) Cournot equilibrium total output is 200. Stackelberg eq....
A monopolist sells in a market described by the inverse demand function ​p = 10 -...
A monopolist sells in a market described by the inverse demand function ​p = 10 - 0.1Q ​ , where ​p is the price and ​Q ​ is the total quantity sold. The monopolist produce its output in two plants which have the cost functions ​C ​ 1 ​ = 0.25q ​ 1 ​ and ​C ​ 2 ​ = 0.5q ​ 2 ​ , where ​q ​ i ​ (i=1,2) is the output produced in plant i (of course,...
For a Monopolist, the inverse demand function is P=80 – Q (Or, the Demand function is...
For a Monopolist, the inverse demand function is P=80 – Q (Or, the Demand function is Q = 80 – P, if you prefer). The firm’s total cost function is 20 + 5Q + .5Q2. Identify profit maximizing quantity and price   Q = _____, P = _____ Graph the relevant curves in the area provided (Hint: If you have difficulty drawing the graph, try plotting a couple of points along the curve) Identify CS and PS in the graph Calculate...
The market (inverse) demand function for a homogenous good is P(Q) = 10 – Q. There...
The market (inverse) demand function for a homogenous good is P(Q) = 10 – Q. There are three firms: firm 1 and 2 each have a total cost of Ci(qi) = 4qi for i ∈ {1.2}. and firm 3 has a total cost of C3(q3) = 2q3. The three firms compete by setting their quantities of production, and the price of the good is determined by a market demand function given the total quantity. Calculate the Nash equilibrium in this...
Suppose the market inverse demand function for rubbing alcohol is p = 120 – q. a....
Suppose the market inverse demand function for rubbing alcohol is p = 120 – q. a. What is the consumer surplus if the price is $30? b. Now suppose the price increases to $40. i. What is the reduction in consumer surplus coming from existing buyers who are still able to purchase rubbing alcohol at $40? ii. What is the reduction in consumer surplus coming from buyers who can no longer purchase rubbing alcohol at $40, but were able to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT