In: Math
1 point) If xx is a binomial random variable, compute P(x)P(x) for each of the following cases:
(a) P(x≤1),n=5,p=0.3P(x≤1),n=5,p=0.3
P(x)=P(x)=
(b) P(x>3),n=4,p=0.1P(x>3),n=4,p=0.1
P(x)=P(x)=
(c) P(x<3),n=7,p=0.7P(x<3),n=7,p=0.7
P(x)=P(x)=
Solution :
Given that ,
a ) p = 0.3
1 - p = 1 - 0.3 = 0.7
n = 5
P(x ≤1)
Using binomial probability formula ,
P(X x) = ((n! / (n - x)!) * px * (1 - p)n - x
P(X 1 ) = (5! / (5 - 1)!) * 0.31 * 0.7)5 - 1
p (x 1 ) = p (x = 0 )
+ (5! / (5 - 0)!) * 0.30 * 0.7)5 - 1
p ( x 1 ) = 0.5282
Probability = 0.5282
b ) n = 4
p = 0.1
1 - p = 1 -0.1 = 0.9
( x > 3 )
p ( x > 3 ) = p (x = 3 )+ p (x = 4)
= (4 / (3 - 4)!) * 0.13 * 0.9)4 +
= (4! / (4 - 3)!) * 0.14 * 0.9)3 +
p ( x > 3 ) = 0.0001
Probability = 0.0001
c ) n = 7
p = 0.7
1 - p = 1 - 0.7 = 0.3
x < 3 )
p ( x < 3 ) = p (x = 0 )+ p (x = 1) + p (x = 2)
= (7 / (0 - 4)!) * 0.73 * 0.3)4 +
= (7! / (1 - 3)!) * 0.74 * 0.3)3 +
= (7! / (2 - 2)!) * 0.75 * 0.3)2 +
= (7! / ( 6 - 1)!) * 0.76 * 0.3)1 +
= (7! / (7 - 0)!) * 0.77 * 0.3)0 +
p ( x < 3 ) = 0.2880
Probability = 0.2880