Question

In: Math

1 point) If xx is a binomial random variable, compute P(x)P(x) for each of the following...

1 point) If xx is a binomial random variable, compute P(x)P(x) for each of the following cases:

(a)  P(x≤1),n=5,p=0.3P(x≤1),n=5,p=0.3


P(x)=P(x)=

(b)  P(x>3),n=4,p=0.1P(x>3),n=4,p=0.1


P(x)=P(x)=

(c)  P(x<3),n=7,p=0.7P(x<3),n=7,p=0.7


P(x)=P(x)=

Solutions

Expert Solution

Solution :

Given that ,

a ) p = 0.3

1 - p = 1 - 0.3 = 0.7  

n = 5

P(x ≤1)

Using binomial probability formula ,

P(X x) = ((n! / (n - x)!) * px * (1 - p)n - x

P(X 1 ) = (5! / (5 - 1)!) * 0.31 * 0.7)5 - 1

p (x   1 ) = p (x = 0 )

+ (5! / (5 - 0)!) * 0.30 * 0.7)5 - 1

p ( x 1 ) = 0.5282

Probability = 0.5282

b ) n = 4

p = 0.1

1 - p = 1 -0.1 = 0.9

(  x > 3 )

p (  x > 3 ) = p (x = 3 )+ p (x = 4)

= (4 / (3 - 4)!) * 0.13 * 0.9)4 +

  = (4! / (4 - 3)!) * 0.14 * 0.9)3 +

p (  x >  3 )  = 0.0001

Probability = 0.0001

c ) n = 7

p = 0.7

1 - p = 1 - 0.7 = 0.3

   x < 3 )

p (  x < 3 )  = p (x = 0 )+ p (x = 1) + p (x = 2)

= (7 / (0 - 4)!) * 0.73 * 0.3)4 +

   = (7! / (1 - 3)!) * 0.74 * 0.3)3 +

  = (7! / (2 - 2)!) * 0.75 * 0.3)2  +

  = (7! / ( 6 - 1)!) * 0.76 * 0.3)1 +

= (7! / (7 - 0)!) * 0.77 * 0.3)0  +

p (  x < 3 )  = 0.2880

Probability = 0.2880


Related Solutions

If x is a binomial random variable, compute P(x) for each of the following cases:
If x is a binomial random variable, compute P(x) for each of the following cases: (a) P(x≤5),n=7,p=0.3 P(x)= (b) P(x>6),n=9,p=0.2 P(x)= (c) P(x<6),n=8,p=0.1 P(x)= (d) P(x≥5),n=9,p=0.3   P(x)=  
If x is a binomial random variable, compute p(x) for each of the following cases: (a)...
If x is a binomial random variable, compute p(x) for each of the following cases: (a) n=3,x=2,p=0.9 p(x)= (b) n=6,x=5,p=0.5 p(x)= (c) n=3,x=3,p=0.2 p(x)= (d) n=3,x=0,p=0.7 p(x)=
If x is a binomial random variable, compute P(x) for each of the following cases, rounded...
If x is a binomial random variable, compute P(x) for each of the following cases, rounded to two decimal places: c)  P(x<1),n=5,p=0.1 d)  P(x≥3),n=4,p=0.5
Given that xx is a random variable having a Poisson distribution, compute the following: (a)  P(x=1)P(x=1) when...
Given that xx is a random variable having a Poisson distribution, compute the following: (a)  P(x=1)P(x=1) when μ=4.5μ=4.5 P(x)=P(x)= (b)  P(x≤8)P(x≤8)when μ=0.5μ=0.5 P(x)=P(x)= (c)  P(x>7)P(x>7) when μ=4μ=4 P(x)=P(x)= (d)  P(x<1)P(x<1) when μ=1μ=1 P(x)=P(x)=
If x is a binomial random variable, compute ?(?) for each of the following cases: (a)  ?(?≤1),?=3,?=0.4...
If x is a binomial random variable, compute ?(?) for each of the following cases: (a)  ?(?≤1),?=3,?=0.4 ?(?)= (b)  ?(?>1),?=4,?=0.2 ?(?)= (c)  ?(?<2),?=4,?=0.8 ?(?)= (d)  ?(?≥5),?=8,?=0.6 ?(?)=
If x is a binomial random variable, compute P(x) for each of the following cases: (a)  P(x≤5),n=9,p=0.7P(x≤5),n=9,p=0.7...
If x is a binomial random variable, compute P(x) for each of the following cases: (a)  P(x≤5),n=9,p=0.7P(x≤5),n=9,p=0.7 (b)  P(x>1),n=9,p=0.1P(x>1),n=9,p=0.1 (c)  P(x<3),n=5,p=0.6P(x<3),n=5,p=0.6 (d)  P(x≥1),n=6,p=0.9P(x≥1),n=6,p=0.9
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X =...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X = 4) P(X < 5) P(X ≥ 4)
If x is a binomial random variable, compute the mean, the standard deviation, and the variance...
If x is a binomial random variable, compute the mean, the standard deviation, and the variance for each of the following cases: (a)  n=3,p=0.9 μ= σ^2= σ= (b)  n=6,p=0.1 μ= σ^2= σ= (c)  n=4,p=0.6 μ= σ^2= σ= (d)  n=5,p=0.8 μ= σ^2= σ=
If x is a binomial random variable, compute the mean, the standard deviation, and the variance...
If x is a binomial random variable, compute the mean, the standard deviation, and the variance for each of the following cases: (a)  n=4,p=0.4n=4,p=0.4 μ= σ2= σ= (b)  n=3,p=0.2n=3,p=0.2 μ= σ2= σ= (c)  n=3,p=0.6n=3,p=0.6 μ= σ2= σ= (d)  n=6,p=0.7n=6,p=0.7 μ= σ2= σ=
Suppose that x is a binomial random variable with n = 5, p = .66, and...
Suppose that x is a binomial random variable with n = 5, p = .66, and q = .34. (b) For each value of x, calculate p(x). (Round final answers to 4 decimal places.) p(0) = p(1)= p(2)= p(3)= p(4)= p(5) (c) Find P(x = 3). (Round final answer to 4 decimal places.) (d) Find P(x ≤ 3). (Do not round intermediate calculations. Round final answer to 4 decimal places.) (e) Find P(x < 3). (Do not round intermediate calculations....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT