Question

In: Physics

1) An electron has a kinetic energy that is 50% larger than its classical kinetic energy....

1) An electron has a kinetic energy that is 50% larger than its classical kinetic energy. Electron mass is 0.511 MeV/c^2.

a. What is the speed of the electron expressed in the unit of speed of light c?

b. What is the total energy of the electron expressed in the unit of MeV?

c. What is the kinetic energy of the electron expressed in the unit of MeV?

Solutions

Expert Solution

a )

the momentum in classical is Pcl = Po = mo v

relativistic momentum P = m v

m = mo / ( 1 -2 )1/2

= 1 / ( 1 -2 )1/2

P = mo v / ( 1 -2 )1/2

= Pcl

given

momentum is 50 % larger than Pcl

P = Pcl + 0.5 Pcl

= 3 Pcl / 2

P / Pcl = = 3/2

1/ 2 = 4/9

(1 -2 ) = 4/ 9

= 0.74

v = C

= 0.74 C

c )

using KE = ( P2 C2 + mo2 C4 )1/2

= moC2 ( 22 + 1 )1/2

= 0.511 x ( 5/4 +1 )1/2

KE = 0.7665 MeV

b )

T = KE + rest mass energy

KE = T + mo C2

T = KE - mo C2

=0.5 mo C2

= 0.5 x 0.511

T = 0.255 MeV


Related Solutions

1. For what kinetic energy is the de Broglie wavelength of an electron equal to its...
1. For what kinetic energy is the de Broglie wavelength of an electron equal to its Compton wavelength? Express your answer in units of mc2 in doing the calculation, and then use mc2 = 0.5 MeV.(Answer: 0.2 MeV) 2. A beam of electrons with energy 1.0 eV approaches a potential barrier with U = 2.0 eV, whose width is 0.10 nm (see a figure below). Estimate the fraction of electrons that tunnel through the barrier. (Hint: use the relation of...
An electron has a kinetic energy of 2.17E-17 J. It moves on a circular path that...
An electron has a kinetic energy of 2.17E-17 J. It moves on a circular path that is perpendicular to a uniform magnetic field of magnitude 5.13E-5 T. Determine the radius of the path.
In the figure, an electron with an initial kinetic energy of 4.00 keV enters region 1...
In the figure, an electron with an initial kinetic energy of 4.00 keV enters region 1 at time t = 0. That region contains a uniform magnetic field directed into the page, with magnitude 0.00510 T. The electron goes through a half-circle and then exits region 1, headed toward region 2 across a gap of 25.0 cm. There is an electric potential difference ΔV = 2000 V across the gap, with a polarity such that the electron's speed increases uniformly...
In a laboratory an electron is given a kinetic energy of .400 MeV and sent to...
In a laboratory an electron is given a kinetic energy of .400 MeV and sent to the right. A spacecraft moves to the right with a speed of .50c with respect to the laboratory. What would be the kinetic energy of the electron as measured by someone in the spacecraft's frame of reference? The mass of an electron is 9.11x10-31 kg and the mass energy of an electron is .511 MeV.
What is the wavelength of an electron with a kinetic energy of 8 keV? What are...
What is the wavelength of an electron with a kinetic energy of 8 keV? What are the wavelength and frequency of the 8 keV x-rays frequently used for protein crystallography experiments? Compare to question 17 (What is the wavelength of an electron with a kinetic energy of 8 keV?). Consider electrons are accelerated with 5 kV voltage in a cathode ray tube. What is the short wavelength limit (SWL) of the continuous radiation that will be obtained? Thanks
What is the maximum kinetic energy of an electron emitted in the beta decay of a...
What is the maximum kinetic energy of an electron emitted in the beta decay of a free neutron?
Calculate the speed (in m/s) of an electron and a proton with a kinetic energy of...
Calculate the speed (in m/s) of an electron and a proton with a kinetic energy of 1.70 electron volt (eV). (The electron and proton masses are me = 9.11 ✕ 10−31 kg and mp = 1.67 ✕ 10−27 kg. Boltzmann's constant is kB = 1.38 ✕ 10−23 J/K.) (a) an electron m/s (b) a proton m/s (c) Calculate the average translational kinetic energy in eV of a 3.15 ✕ 102 K ideal gas particle. (Recall from Topic 10 that 1...
Compare and contrast the relativistic and classical expressions for the kinetic energy of an object. How...
Compare and contrast the relativistic and classical expressions for the kinetic energy of an object. How does the relativistic expression explain the impossibility of an object to reach the speed of light?
Calculate the momentum p, kinetic energy K, and total energy E of an electron traveling at...
Calculate the momentum p, kinetic energy K, and total energy E of an electron traveling at each of the speeds tabulated below. v p (keV/c) K (keV) E (keV) (a) 0.03c (b) 0.4c (c) 0.9c
a.A free (i.e. unbound) electron has a kinetic energy of 7.5 eV. What is the angular...
a.A free (i.e. unbound) electron has a kinetic energy of 7.5 eV. What is the angular wavenumber of the travelling wave that describes the solution to Schr ̈odinger’s equation for this particle? b.A particle of mass 6.64 × 10-27 kg is confined in an infinite square well of width 2.50 × 10-11 m. It is observed to have an energy of 3.00 eV. How many nodes does its wavefunction have? (Not including those at the walls of the well.) c.What...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT