Question

In: Physics

A 1.85 kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface...

A 1.85 kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 980 N/m . The block comes to rest after compressing the spring 4.15 cm.

A.Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 0 cm.

B.Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 1.00 cm.

C.Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 2.00 cm.

D.Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 3.00 cm.

E.Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 4.00 cm.

Solutions

Expert Solution


Related Solutions

A 0.990 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/s....
A 0.990 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/s. The block encounters an unstretched spring with a force constant of 231 N/m. Before the block comes to rest, the spring is compressed by 9.17 cm. 1) Suppose the force constant of the spring is doubled, but the mass and speed of the block remain the same. By what multiplicative factor do you expect the maximum compression of the spring to change? Explain. 2)...
A 1.20 kg block slides with a speed of 0.860 m/s on a frictionless horizontal surface...
A 1.20 kg block slides with a speed of 0.860 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 516 N/m . The block comes to rest after compressing the spring 4.15 cm. A. Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 0 cm. B. Find the spring potential energy, U, the kinetic energy of the...
A 1.78-kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until...
A 1.78-kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 660 N/m. The block comes to rest after compressing the spring 4.18 cm. Calculate the spring potential energy for a compression of 0 cm. Calculate the kinetic energy of the block for a compression of 0 cm. Calculate the total mechanical energy of the system for a compression of 0 cm. Calculate the spring potential...
Starting with a speed of 2.50 m/s, a 2.00 kg block slides across a rough horizontal...
Starting with a speed of 2.50 m/s, a 2.00 kg block slides across a rough horizontal surface until it collides with a spring. The spring compresses a distance of 6.00cm as the block comes momentarily to rest. The total distance traveled by the block from its starting position to the position where it comes to rest is 0.800m. If the coefficient of kinetic friction between the block and the surface is 0.100, what is the spring constant of the spring?
A block of wood slides on a frictionless horizontal surface. It is attached to a spring...
A block of wood slides on a frictionless horizontal surface. It is attached to a spring and oscillates with a period of 0.8 s. A second block rests on top of the first. The coefficient of static friction between the two blocks is 0.25. If the amplitude of oscillations is 1.2 cm, will the block on the top slip? What is the greatest amplitude of oscillation for which the top block will not slip?
A 2.90-kg box is sliding along a frictionless horizontal surface with a speed of 1.8 m/s...
A 2.90-kg box is sliding along a frictionless horizontal surface with a speed of 1.8 m/s when it encounters a spring. (a) Determine the force constant of the spring, if the box compresses the spring 5.30 cm before coming to rest. (b) Determine the initial speed the box would need in order to compress the spring by 1.50 cm.
A block of mass ? slides along a frictionless surface with a speed ? and collides...
A block of mass ? slides along a frictionless surface with a speed ? and collides with a stationary block of mass 2? . After the collision the block of mass ? rebounds with a speed of ?⁄2. What is the greatest speed ???? that the block of mass 2? can have after the collision?
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of...
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.38. The block has an initial speed of vo = 13 m/s in the positive x-direction as shown. a) write an expression for x-component of the frictional force the block experiences, F(f), in terms of the given variables and variables available in the palette b) what is the magnitude of the frictional force in...
Example 13-12 depicts the following scenario. A 0.980 kg block slides on a frictionless, horizontal surface...
Example 13-12 depicts the following scenario. A 0.980 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/sm/s. The block encounters an unstretched spring with a force constant of 263 N/mN/m, as shown in the sketch. Before the block comes to rest, the spring is compressed by 8.55 cmcm. Part A: Suppose the force constant of the spring is doubled, but the mass and speed of the block remain the same. By what multiplicative factor do...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 410 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 7.60 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion? (a) Number Enter your answer for part (a)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT