Question

In: Statistics and Probability

Let ?1. . . ?5 be identically independently distributed (iid) variables sampled from a binomial distribution...

Let ?1. . . ?5 be identically independently distributed (iid) variables sampled from a binomial distribution Bin(3,p).

a) Compute the likelihood function (LF).

b) Adopt the appropriate conjugate prior to the parameter p, choosing hyperparameters optionally within the support of distribution.

c) Using (a) and (b), find the posterior distribution of p.

d) Compute the minimum Bayesian risk estimator of p.

Solutions

Expert Solution


Related Solutions

Let X and Y be independently and identically distributed random variables. Then, what is P (X...
Let X and Y be independently and identically distributed random variables. Then, what is P (X < Y ) (a) in case the common distribution of X and Y is continuous? (b) in case P(X=i)=P(Y =i)= 1, i=1,2,···,n.
Let ?1 , ?2 , ... , ?? be independent, identically distributed random variables with p.d.f....
Let ?1 , ?2 , ... , ?? be independent, identically distributed random variables with p.d.f. ?(?) = ???−1, 0 ≤ ? ≤ 1 . c) Show that the maximum likelihood estimator for ? is biased, and find a function of the mle that is unbiased. (Hint: Show that the random variable −ln (??) is exponential, the sum of exponentials is Gamma, and the mean of 1/X for a gamma with parameters ? and ? is 1⁄(?(? − 1)).) d)...
Let ?1,?2,…,??be independent, identically distributed random variables with p.d.f. ?(?) = ??^?−1,0 ≤ ? ≤ 1...
Let ?1,?2,…,??be independent, identically distributed random variables with p.d.f. ?(?) = ??^?−1,0 ≤ ? ≤ 1 . c. Show that the maximum likelihood estimator for ? is biased, and find a function of the mle that is unbiased. (Hint: Show that the random variable −ln (??) is exponential, the sum of exponentials is Gamma, and the mean of 1/X for a gamma with parameters ? and ? is 1 / (?(? − 1)). d. Is the estimator you found in...
Let Xi's be independent and identically distributed Poisson random variables for 1 ≤ i ≤ n....
Let Xi's be independent and identically distributed Poisson random variables for 1 ≤ i ≤ n. Derive the distribution for the summation of Xi from 1 to n. (Without using MGF)
Let X1, X2, . . . be a sequence of independent and identically distributed random variables...
Let X1, X2, . . . be a sequence of independent and identically distributed random variables where the distribution is given by the so-called zero-truncated Poisson distribution with probability mass function; P(X = x) = λx/ (x!(eλ − 1)), x = 1, 2, 3... Let N ∼ Binomial(n, 1−e^−λ ) be another random variable that is independent of the Xi ’s. 1) Show that Y = X1 +X2 + ... + XN has a Poisson distribution with mean nλ.
Let Y1, Y2, Y3, and Y4be independent, identically distributed random variables from a population with a...
Let Y1, Y2, Y3, and Y4be independent, identically distributed random variables from a population with a mean μ and a variance σ2.  Consider a different estimator of μ: W =  Y1+  Y2+ Y3+ Y4. Let Y1, Y2, Y3, and Y4be independent, identically distributed random variables from a population with a mean μ and a variance σ2.  Consider a different estimator of μ: W = 1/8 Y1+ 1/3 Y2+ 1/6 Y3+ 3/8 Y4. This is an example of a weighted average of the Yi. Show...
Let X1, X2, . . . be iid random variables following a uniform distribution on the...
Let X1, X2, . . . be iid random variables following a uniform distribution on the interval [0, θ]. Show that max(X1, . . . , Xn) → θ in probability as n → ∞
Let X and Y be two independent and identically distributed random variables with expected value 1...
Let X and Y be two independent and identically distributed random variables with expected value 1 and variance 2.56. (i) Find a non-trivial upper bound for P(|X + Y − 2| ≥ 1). 5 MARKS (ii) Now suppose that X and Y are independent and identically distributed N(1, 2.56) random variables. What is P(|X + Y − 2| ≥ 1) exactly? Briefly, state your reasoning. 2 MARKS (iii) Why is the upper bound you obtained in Part (i) so different...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2? (Note: The formulas we did were for the continuous case, so they don’t directly apply here, but you...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT