Question

In: Economics

a.) Two identical firms compete as a Cournot duopoly. The market demand is P=100-2Q, where Q...

a.) Two identical firms compete as a Cournot duopoly. The market demand is P=100-2Q, where Q stands for the combined output of the two firms, Q=q1 +q2. The marginal cost for each firm is 4. Derive the best-response functions for these firms expressing what q1 and q2 should be.

b.) Continuing from the previous question, identify the price and quantity that will prevail in the Cournot duopoly market

c.) Now suppose two identical firms compete as a Bertrand duopoly. The market demand is P=100-2Q, where Q stands for the combined output of the two firms, Q=q1+q2. The marginal cost for each firm is 4. Identify the price and quantity in this market.

Solutions

Expert Solution

a) Each firm’s marginal cost function is MC = 4 and the market demand function is P = 100 – 2(q1 + q2) where Q is the sum of each firm’s output q1 and q2.

Find the best response functions for both firms:

Revenue for firm 1

R1 = P*q1 = (100 – 2(q1 + q2))*q1 = 100q1 – 2q12 – 2q1q2.

Firm 1 has the following marginal revenue and marginal cost functions:

MR1 = 100 – 4q1 – 2q2

MC1 = 4

Profit maximization implies:

MR1 = MC1

100 – 4q1 – 2q2 = 4

which gives the best response function:

q1 = 24 - 0.5q2.

By symmetry, Firm 2’s best response function is:

q2 = 24 - 0.5q1.

b) Cournot equilibrium is determined at the intersection of these two best response functions:

q1 = 24 - 0.5(24 - 0.5q1)

q1 = 12 + 0.25q1

This gives q1 = q2 = 16 units This the Cournot solution. Price is (100 – 2*32) = $36

c) Under Bertrand competition, P = MC for identical goods. Hence price is 4. Market quantity is Q = (100 - 4)/2 = 48 units, 24 units by each.


Related Solutions

In a duopoly market with two identical firms, the market demand curve is: P=50-2Q And the...
In a duopoly market with two identical firms, the market demand curve is: P=50-2Q And the marginal cost and average cost of each firm is constant: AC=MC=2 a. Solve for firm 1’s reaction curve and graph b. Solve for firm 2’s reaction curve and graph c. Solve for each firm’s Q and P in a cournot equilibrium and show on your graph i. What is the profit for each firm?
5. In a duopoly market with two identical firms, the market demand curve is: P=50-2Q And...
5. In a duopoly market with two identical firms, the market demand curve is: P=50-2Q And the marginal cost and average cost of each firm is constant: AC=MC=2 a. Solve for firm 1’s reaction curve and graph b. Solve for firm 2’s reaction curve and graph c. Solve for each firm’s Q and P in a cournot equilibrium and show on your graph i. What is the profit for each firm? 6. Now assume the same market demand curve as...
Two firms compete in a market with inverse demand P(Q) = a − Q, where the...
Two firms compete in a market with inverse demand P(Q) = a − Q, where the aggregate quantity is Q = q1 + q2. The profit of firm i ∈ {1, 2} is πi(q1, q2) = P(Q)qi − cqi , where c is the constant marginal cost, with a > c > 0. The timing of the game is: (1) firm 1 chooses its quantity q1 ≥ 0; (2) firm 2 observes q1 and then chooses its quantity q2 ≥...
Consider two identical firms competing as Cournot oligopolists in a market with demand p(Q)=100-0.5Q. Both firms...
Consider two identical firms competing as Cournot oligopolists in a market with demand p(Q)=100-0.5Q. Both firms have total costs,TC=10q where 10 is the marginal cost of production. ( Here Q represents total output in the market whereas q represents firm level output.) (b)   Now assume that the firms collude. They again play a one-shot game. What is the output that each firm should produce in order to sustain the collusion? Find the market price, and profits of each firm. Are...
Consider an industry with demand Q = a − p where 3 identical firms that compete...
Consider an industry with demand Q = a − p where 3 identical firms that compete a la Cournot. Each firm’s cost function is given by C = F + c q. Suppose two of the firms merge and that the merged firm’s cost function is given by C = F'+C'q, where F<F'<2F (a) Determine each firm’s market share before and after the merger. (b) Suppose that a = 10 and c = 3. Determine the Herfindahl index after the...
Suppose there are two identical firms A and B facing a market demand P=100-2Q. Both firms...
Suppose there are two identical firms A and B facing a market demand P=100-2Q. Both firms have the same marginal cost MC=4. Assume that firms are Cournot-competitors (in quantity). Find the equilibrium price, quantity and profits. Assume that firms are Stackelberg-competitors (in quantity) and Firm A is the leading firm. Find the equilibrium price, quantity and profits. What general conclusions can you derive from the answers that you found in (a) & (b)?
Demand in a market dominated by two firms (a Cournot duopoly) is determined according to: P...
Demand in a market dominated by two firms (a Cournot duopoly) is determined according to: P = 300 – 4(Q1 + Q2), where P is the market price, Q1 is the quantity demanded by Firm 1, and Q2 is the quantity demanded by Firm 2. The marginal cost and average cost for each firm is constant; AC=MC = $77. The cournot-duopoly equilibrium profit for each firm is _____.
Demand in a market dominated by two firms (a Cournot duopoly) is determined according to: P...
Demand in a market dominated by two firms (a Cournot duopoly) is determined according to: P = 300 – 4(Q1 + Q2), where P is the market price, Q1 is the quantity demanded by Firm 1, and Q2 is the quantity demanded by Firm 2. The marginal cost and average cost for each firm is constant; AC=MC = $68. The cournot-duopoly equilibrium profit for each firm is _____. Hint: Write your answer to two decimal places.
Consider two identical firms in a Cournot competition. The market demand is P = a –...
Consider two identical firms in a Cournot competition. The market demand is P = a – bQ. TC1 = cq1 = TC2 = cq2 . Find the profit function of firm 1. Maximize the profit function to find the reaction function of firm 1. Solve for the Cournot-Nash Equilibrium. Carefully discuss how the slope of the demand curve affects outputs and price.
1 Consider two Cournot competitive firms – with the following market demand function P=100-Q. The firms...
1 Consider two Cournot competitive firms – with the following market demand function P=100-Q. The firms face constant marginal costs, MC1 = 5 whereas MC2 = 25. However, if they merge then the marginal production costs would fall to 5. Calculate the costs and benefits due to the merger for either firm.    Is this merger Pareto improving for the economy? Explain.    A Bertrand competition does not necessarily gravitate towards competitive prices in the equilibrium, with imperfect substitutes. In...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT