Question

In: Math

Solve y′′ + 4y′ + 3y = 15e^2t given y(0) = −7,y′(0) = 16 by the...

Solve y′′ + 4y′ + 3y = 15e^2t given y(0) = −7,y′(0) = 16 by the method of Laplace transforms.

Solutions

Expert Solution



Related Solutions

Again considering y'' + 4y' + 3y = 0: (a) Solve the IVP y'' + 4y'...
Again considering y'' + 4y' + 3y = 0: (a) Solve the IVP y'' + 4y' + 3y = 0; y(0) = 1, y'(0) = α where α > 0. (b) Determine the coordinates (tm,ym) of the maximum point of the solution as a function of α. (c) Determine the behavior of tm and ym as α →∞.
Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
Given the differential equation y′′-3y′-4y=-2sin(2t),  y(0)=-1,  y′(0)=1 Apply the Laplace Transform and solve for Y Y(s)=L{y} Y(s)=    L(y′)=sY(s)-y(0)and...
Given the differential equation y′′-3y′-4y=-2sin(2t),  y(0)=-1,  y′(0)=1 Apply the Laplace Transform and solve for Y Y(s)=L{y} Y(s)=    L(y′)=sY(s)-y(0)and L(y′′)=s2Y(s)-y′(0)-sy(0)
Solve the following initial value: y ''+ 4y = 2 cos 2t, y(0) = −2 and...
Solve the following initial value: y ''+ 4y = 2 cos 2t, y(0) = −2 and y 0 (0) = 0
Use laplace transform to solve IVP 2y”+3y’+y=8e^(-2t) , y(0)=-4 , y’(0)=2
Use laplace transform to solve IVP 2y”+3y’+y=8e^(-2t) , y(0)=-4 , y’(0)=2
Solve the differential equation. y''-3y'-4y=5e^4x initial conditions: y(0)=2 y'(0)=4
Solve the differential equation. y''-3y'-4y=5e^4x initial conditions: y(0)=2 y'(0)=4
find the solution of the given initial value problem. y′′−2y′−3y=3te^2t y(0)=1 y′(0)=0
find the solution of the given initial value problem. y′′−2y′−3y=3te^2t y(0)=1 y′(0)=0
Solve the ordinary differential equation analytically: y''-4y-+3y = 5cos(x) + e^(2x) y(0)=1, y'(0)=0
Solve the ordinary differential equation analytically: y''-4y-+3y = 5cos(x) + e^(2x) y(0)=1, y'(0)=0
Find the solution to the problem of initial value 2y'''' +3y'''--16''+15y'-- 4y=0 subjected to y(0)= --...
Find the solution to the problem of initial value 2y'''' +3y'''--16''+15y'-- 4y=0 subjected to y(0)= -- 2, y'(0)=6, y''(0)=3, y'''(0)=1/2
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0)...
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0) = 0. Solve without the Laplace Transform, first, and then with the Laplace Transform.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT