Question

In: Math

Problem 1 ✓ Problem 2 Problem 3 ✓ Problem 4 … Problem 5 … Problem 6...

  • Problem 1 ✓
  • Problem 2
  • Problem 3 ✓
  • Problem 4 …
  • Problem 5 …
  • Problem 6 ✓
  • Problem 7
  • Problem 8
  • Problem 9

close sidebar

  • webwork
  • /
  • f2019stat213
  • /
  • stat_213_assignment_3
  • /
  • 5

STAT 213 Assignment 3: Problem 5

Previous Problem Problem List Next Problem

(1 point)

To examine the effectiveness of its four annual advertising promotions, a mail order company has sent a questionnaire to each of its customers, asking how many of the previous year's promotions prompted orders that would not have otherwise been made. The accompanying table lists the probabilities that were derived from the questionnaire, where X is the random variable representing the number of promotions that prompted orders. If we assume that overall customer behavior next year will be the same as last year, what is the expected number of promotions that each customer will take advantage of next year by ordering goods that otherwise would not be purchased?

X 0 1 2 3 4
P(X) 0.072 0.221 0.347 0.176 0.184

Expected value =

equation editor

Equation Editor

A previous analysis of historical records found that the mean value of orders for promotional goods is 35 dollars, with the company earning a gross profit of 22% on each order. Calculate the expected value of the profit contribution next year.

Expected value =

equation editor

Equation Editor

The fixed cost of conducting the four promotions is estimated to be 17000 dollars with a variable cost of 2 dollars per customer for mailing and handling costs. What is the minimum number of customers required by the company in order to cover the cost of promotions? (Round your answer to the next highest integer.)

Breakeven point =

equation editor

Equation Editor

Solutions

Expert Solution


Related Solutions

ID X Y 1 2 3 2 3 6 3 4 6 4 5 7 5...
ID X Y 1 2 3 2 3 6 3 4 6 4 5 7 5 8 7 6 5 7 7 6 7 8 8 8 9 7 8 10 12 11 Test the significance of the correlation coefficient. Then use math test scores (X) to predict physics test scores (Y).  Do the following: Create a scatterplot of X and Y. Write the regression equation and interpret the regression coefficients (i.e., intercept and slope). Predict the physics score for each....
[4 5 5 2 4 4 6 3 3 7 5 3 6 3 4 4...
[4 5 5 2 4 4 6 3 3 7 5 3 6 3 4 4 6 5 4 5 3 7 5 5 4 2 6 5 6 6] This is my dataset Find mean, median, mode, variance, standard deviation, coefficient of variation, range, 70th percentile, 3rdquartile of the data and skewness and define what each of these statistics measure. For example, mean is a measure of the central tendency, what about the rest? Use Chebyshev’s rule to find...
[4 5 5 2 4 4 6 3 3 7 5 3 6 3 4 4...
[4 5 5 2 4 4 6 3 3 7 5 3 6 3 4 4 6 5 4 5 3 7 5 5 4 2 6 5 6 6] This is my dataset Split the dataset in two equal parts. You have 30 datavalues. If you split the data in two equal parts each part will contain 15 data values.  Call the first part Y and second part X.Draw scatter plot of the 2 datasets, X being on the horizontal...
tens Units 1 5 2 3 4 8 5 2 5 6 9 6 1 3...
tens Units 1 5 2 3 4 8 5 2 5 6 9 6 1 3 5 4 7 9 7 0 0 4 5 6 9 9 8 1 3 5 6 8 9 9 0 1 2 3 5 9 The table represent a random sample of 31 test scores taken from a large lecture class. Find the following [round to 2 decimal points X. XX] a) [2 pts] Find the 5 number summary [L, Q1, Q2, Q3,...
X 1 3 5 3 4 4 Y 2 5 4 3 4 6 A: Plot...
X 1 3 5 3 4 4 Y 2 5 4 3 4 6 A: Plot the date B: find the line of best fit C: determine ŷ AT x=3 D: Find r and r^2 E: explain r and r^2
2. Consider functions f : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4,...
2. Consider functions f : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. (a) How many of these functions are strictly increasing (i.e. f(1) < f(2) < f(3) < f(4) < f(5) < f(6))? Hint: How many different possibilities are there for the range of f? For each range of f, how many strictly increasing functions are there? (b) How many of these functions are non-decreasing (i.e. f(1) ≤ f(2) ≤...
PROBLEM 5. A box contains 10 tickets labeled 1, 2, 3, 4, 5, 6, 7, 8,...
PROBLEM 5. A box contains 10 tickets labeled 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Draw four tickets and find the probability that the largest number drawn is 8 if: (a) the draws are made with replacement. (b) the draws are made without replacement. PROBLEM 6. Suppose a bakery mixes up a batch of cookie dough for 1,000 cookies. If there are raisins in the dough, it's reasonable to assume raisins will independently have a .001 chance...
Year Promisedcash flows Expectedcash flows 1 6 5 2 6 5 3 6 5 4 6...
Year Promisedcash flows Expectedcash flows 1 6 5 2 6 5 3 6 5 4 6 5 5 6 5 6 6 5 7 6 5 8 6 5 9 6 5 10 106 95 What is the present value today of promised cash flows at 6%? If the price of the bond is 80, what is the yield to maturity of the bond using the promised cash flows? What is the present value today of the expected cash flows...
exampleInput.txt 1 2 3 0 2 3 4 0 1 3 5 0 1 2 6...
exampleInput.txt 1 2 3 0 2 3 4 0 1 3 5 0 1 2 6 1 5 6 8 2 4 6 7 3 4 5 9 10 5 8 9 4 7 9 6 7 8 6 How can I detect when 'cin' starts reading from a new line. The amount of numbers in each row is unknown. I need them in type 'int' to use the data.
2. Consider the following data: x= 1, 2, 3, 4, 5 y =3, 2, 4, 6,...
2. Consider the following data: x= 1, 2, 3, 4, 5 y =3, 2, 4, 6, 5 By hand, not using Matlab, and showing your work: (a) Compute the correlation coefficient. (b) Find the least-squares line. (c) Find the standard deviation around the least-squares line.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT