Question

In: Physics

A circular loop of 22 turns and 46.3 cm diameter is directed perpendicular to a magnetic...

A circular loop of 22 turns and 46.3 cm diameter is directed perpendicular to a magnetic field of 356 mT. The wire itself has a diameter of 4.2 mm and is made of copper. If the magnetic field is uniformly decreased from 356 mT to zero, how much charge moves past a single point on the coil during this time?

Solutions

Expert Solution

N = number of turns of the loop = 22

D = diameter of the loop = 46.3 cm = 0.463 m

R = radius of the loop = D/2 = 0.463/2 = 0.2315 m

length of the wire is given as

L = N (2R)

L = (22) (2 (3.14) (0.2315))

L = 31.984 m

A = Area of the loop = R2 = (3.14) (0.2315)2 = 0.1683 m2

B = Change in magnetic field through the loop = 0 - 356 mT = - 356 mT = - 0.356 T

d = diameter of wire = 4.2 mm = 0.0042 m

r = radius of the wire = d/2 = 0.0042/2 = 0.0021 m

Area of cross-section of the wire is given as

a = r2 = (3.14) (0.0021)2 = 1.4 x 10-5 m2

= resistivity of copper = 1.68 x 10-8

resistance of the wire is given as

R = L/a = ( 1.68 x 10-8) (31.984) /(1.4 x 10-5)

R = 0.03838 ohm

induced current in the wire is given as

i = - N A B/t

i t = - N A B

q = - N A B (Since q = i t )

q = - (22) (0.1683) (- 0.356)

q = 1.32 C


Related Solutions

The magnetic field perpendicular to a circular wire loop 7.7 cmcm in diameter is changed from...
The magnetic field perpendicular to a circular wire loop 7.7 cmcm in diameter is changed from +0.44 TT to -0.27 TT in 150 msms , where + means the field points away from an observer and - toward the observer. Calculate the induced emf.
A 20-turn circular coil of radius 4.20 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil.
A 20-turn circular coil of radius 4.20 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil att = 5.40 s.
A flat circular coil composed of 120 turns has a radius of 17.0 cm. Perpendicular to...
A flat circular coil composed of 120 turns has a radius of 17.0 cm. Perpendicular to the surface of the coil is a 3.50-T magnetic field. What is the induced emf in this coil, if the magnetic field reverses direction in 0.25 s?
The 2.0-cm-diameter solenoid in the figure passes through the center of a 6.0-cm-diameter loop. The magnetic...
The 2.0-cm-diameter solenoid in the figure passes through the center of a 6.0-cm-diameter loop. The magnetic field inside the solenoid is 0.20 1. What is the magnetic flux through the loop when it is perpendicular to the solenoid? What is the magnetic flux through the loop when it is perpendicular to the solenoid? Express your answer using two significant figures. Magnetic Flux = ______ Wb 2. What is the magnetic flux through the loop when it is tilted at a...
A circular loop which possesses 55 turns is placed in a uniform magnetic field. The direction...
A circular loop which possesses 55 turns is placed in a uniform magnetic field. The direction of the magnetic field makes an angle of 70 o with respect to the normal direction to the loop. The magnetic field strength B is increased at a constant rate from B1 =3T to B2 =17T in a time interval of 20 s. If Ф1 is 3.99 Wb, a) What is the radius of the wire? (PLEASE THOROUGHLY EXPLAIN) b) What is the EMF?...
A circular coil with a diameter of 25.0 cm and 158 turns rotates about a vertical...
A circular coil with a diameter of 25.0 cm and 158 turns rotates about a vertical axis with an angular speed of 1230 rpm . The only magnetic field in this system is that of the Earth. At the location of the coil, the horizontal component of the magnetic field is 3.81×10−5T, and the vertical component is 2.85×10−5T. Find the maximum emf induced in the coil. Answer in mV
Question 1: A 13.7 cm diameter loop of wire is initially oriented perpendicular to a 1.9...
Question 1: A 13.7 cm diameter loop of wire is initially oriented perpendicular to a 1.9 T magnetic field. The loop is rotated so that its plane is parallel to the field direction in 0.33 s . Part A: What is the average induced emf in the loop? Question 2: A 7.4 cm diameter circular loop of wire is in a 0.71 T magnetic field. The loop is removed from the field in 0.28 s . Assume that the loop...
A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of...
A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of 0.680 T with the plane of the loop perpendicular to the magnetic field, as shown. The loop is rotated 180° about the axis in 0.242 s. 1.What is the direction of the induced current flow as the loop begins to rotate? 2.What is the average induced emf in the loop during this rotation?
A circular wire loop of radius 1.4 cm is placed in a magnetic field of magnitude...
A circular wire loop of radius 1.4 cm is placed in a magnetic field of magnitude 2.3 T. If the magnetic field goes to zero in a time of 5 s, what is the magnitude of the current induced in the loop? The wire has a diameter of 2 mm, and the resistivity of copper is 1.7 x 10-8 Ohm-m.
A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 283 Ω. The magnetic field is now increased at a constant rate by a factor of 2.80 in 19.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Tries 0/20 Calculate the magnitude of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT