Question

In: Physics

A 20-turn circular coil of radius 4.20 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil.

A 20-turn circular coil of radius 4.20 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil att = 5.40 s.


Solutions

Expert Solution


Related Solutions

A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.25 V and a current of 2.5 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.81 V and a current of 3.8 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are...
A 123 turn circular coil of radius 2.27 cm is immersed in a uniform magnetic field...
A 123 turn circular coil of radius 2.27 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.167 s , the magnetic field strength increases from 54.5 mT to 94.1 mT . Find the magnitude of the average emf avg induced in the coil during this time interval, in millivolts.
i) A circular coil with radius 20 cm is placed with it’s plane parallel and between...
i) A circular coil with radius 20 cm is placed with it’s plane parallel and between two straight wires P and Q. The coil carries current Icoil = 0.5A . Icoil is in clockwise direction when viewed from left side. Wire P is located 40 cm to the left of a circular coil and carries current Ip = 0.2A while wire Q is located 80 cm to the right of the circular coil and carries current IQ = 0.6A. Both...
A four-turn circular wire coil of radius 0.550 m lies in a plane perpendicular to a...
A four-turn circular wire coil of radius 0.550 m lies in a plane perpendicular to a uniform magnetic field of magnitude 0.355 T. If the wire is reshaped from a four-turn circle to a two-turn circle in 0.128 s (while remaining in the same plane), what is the average induced emf in the wire during this time?
A 105‑turn circular coil of radius 2.41 cm and negligible resistance is immersed in a uniform...
A 105‑turn circular coil of radius 2.41 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 14.7 Ω resistor to create a closed circuit. During a time interval of 0.167 s, the magnetic field strength decreases uniformly from 0.481 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval.
A circular coil of wire with radius 4 cm and 20 turns is placed in a...
A circular coil of wire with radius 4 cm and 20 turns is placed in a uniform magnetic field of magnitude 0.3 T. The magnetic field is parallel to the area vector; i.e. perpendicular to the plane of the coil. a) What is the magnetic flux through the coil? b) The magnetic field is decreased to 0 T in 0.1 s. What is the magnitude of the emf induced in the coil during this time interval? c) If the coil...
A small circular coil with a radius of 1.00 cm has 20 turns and carries a...
A small circular coil with a radius of 1.00 cm has 20 turns and carries a current. A magnetic field probe is located somewhere along the coil's central axis, much farther from the coil's center than the coil's radius. A. The probe indicates that the magnetic field points down the axis, towards the center of the coil. Looking down the axis towards the coil, the current must be flowing which way? (clockwise or counterclockwise) B. At a distance of 3.0...
A circular conducting loop with 20 turns and radius of 20 cm lies in the xy-plane in this region and has a resistance of 40 Ω
  The magnetic flux density in a region is given as ?=2.3⁡???⁡400?⁡̂?+ 0.36⁡???⁡500?⁡̂?+2.1cos256?⁡?̂ T. A circular conducting loop with 20 turns and radius of 20 cm lies in the xy-plane in this region and has a resistance of 40 Ω. Determine the effective value of the induced current in the loop.
A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of...
A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of 0.680 T with the plane of the loop perpendicular to the magnetic field, as shown. The loop is rotated 180° about the axis in 0.242 s. 1.What is the direction of the induced current flow as the loop begins to rotate? 2.What is the average induced emf in the loop during this rotation?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT