Question

In: Operations Management

Using the quotient rule find the derivative of the function in each case: I. f(x)=(x^2)/(x-5) ii....

Using the quotient rule find the derivative of the function in each case:

I. f(x)=(x^2)/(x-5)

ii. g(x)=(2x)/(x^2+2)

iii. h(x)=(sin x)/x

Solutions

Expert Solution

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

i.

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ii.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

iii.

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


Related Solutions

A. Use the Product Rule or the Quotient Rule to find the derivative of the function....
A. Use the Product Rule or the Quotient Rule to find the derivative of the function. g(x) = x3 cot(x) + 6x cos(x) B. Use the Product Rule or the Quotient Rule to find the derivative of the function. f(x) = x2 + x − 7 x2 − 7 C. Use the Product Rule or the Quotient Rule to find the derivative of the function. f(x) = (8x2 + 4)(x2 − 6x − 9)
A) Find the derivative of the function f by using the rules of differentiation. f(x) =...
A) Find the derivative of the function f by using the rules of differentiation. f(x) = 380 B)Find the derivative of the function f by using the rules of differentiation. f(x) = x0.8 C) Find the derivative of the function f by using the rules of differentiation. D)Find the derivative of the function. f(u) = 10 u E)Find the derivative of the function f by using the rules of differentiation. f(x) = 9x3 - 2x2 + 1 u u
Write a code to approximate the derivative of a function f(x) using forward finite difference quotient...
Write a code to approximate the derivative of a function f(x) using forward finite difference quotient f( x + h ) - f( x ) f'(x) ≈ ------------------- (for small h). h For the function f(x) = sin(x), at x=1 , compute the FD quotients for h = 1/2k, k=5,...,N, with N=30 and compare with the exact derivative cos(x). Output k , h , error. Where SHOULD the error tend as h → 0 ? 1. Look at the numbers....
Let f(x) = −3+(3x2 −x+1) ln(2√x−5) (a) Find the derivative of f. (b) Using the derivative...
Let f(x) = −3+(3x2 −x+1) ln(2√x−5) (a) Find the derivative of f. (b) Using the derivative and linear approximation, estimate f(9.1).
The rule of the derivative of a function f is given. Find the location of all...
The rule of the derivative of a function f is given. Find the location of all local extrema. f'(x) = (x2- 1)(x - 2) Group of answer choices Local maxima at -1 and 2; local minimum at 1 Local maximum at 1; local minima at -1 and 2 Local maximum at -1; local minima at -2 and 1 Local maximum at 2 - ; local minimum at 2 +
Find the derivative of the function y= (x + 5)(x + 1) / (x - 5)(x...
Find the derivative of the function y= (x + 5)(x + 1) / (x - 5)(x - 1)
The derivative of a function is f'(x)=-6x^2(x-1)(x+2). How can I identify any local extrema of f,...
The derivative of a function is f'(x)=-6x^2(x-1)(x+2). How can I identify any local extrema of f, if any? How can use the First Derivative test to determine if any of the local extreme identified are a relative maximum or a relative minimum?
For the following exercises, use the definition of derivative to calculate the derivative of each function. f(x) = 3x3 − x2 + 2x + 5
For the following exercises, use the definition of derivative to calculate the derivative of each function.f(x) = 3x3 − x2 + 2x + 5
Take the derivative using the Product Rule and the Chain rule with a transcendental function. Function:...
Take the derivative using the Product Rule and the Chain rule with a transcendental function. Function: (x3lnx)5 Show your work in finding the derivative.   Find the values where the function has a horizontal tangent using the derivative. Write the intervals where the function is increasing and decreasing.
Find the derivative of the function. y = [x + (x + sin2(x))6]5
Find the derivative of the function. y = [x + (x + sin2(x))6]5
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT