Question

In: Statistics and Probability

A simple random sample of 60 items resulted in a sample mean of 63. The population...

A simple random sample of 60 items resulted in a sample mean of 63. The population standard deviation is 12.

a. Compute the 95% confidence interval for the population mean (to 1 decimal).

(  ,   )

b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean (to 2 decimals).

(  ,   )

Solutions

Expert Solution

since population standard deviation is given so we use z-value to find confidence interval

(1-alpha)*100% confidence interval for population mean=sample mean±z(alpha/2)*sd/sqrt(n)

95% confidence interval for population mean=sample mean±z(0.05/2)*sd/sqrt(n)

(a) answer is (60,66)

95% confidence interval for population mean=sample mean±z(0.05/2)*sd/sqrt(n)=63±1.96*12/sqrt(60)=63±3.04=

=(59.96,66.04)=(60,66) ( one decimal place approximation)

n= 60
sample mean= 63
s= 12.00
z-value margin of error lower limit upper limit
95% confidence interval 1.96 3.04 59.96 66.04

(b) answer is (60.85,65.15)

95% confidence interval for population mean=sample mean±z(0.05/2)*sd/sqrt(n)=63±1.96*12/sqrt(120)=63±2.15=

=(60.85,65.15) ( two decimal place approximation)

n= 120
sample mean= 63
s= 12.00
z-value margin of error lower limit upper limit
95% confidence interval 1.96 2.15 60.85 65.15

Related Solutions

A simple random sample of 60 items resulted in a sample mean of 63. The population...
A simple random sample of 60 items resulted in a sample mean of 63. The population standard deviation is 15. a. Compute the 95% confidence interval for the population mean (to 1 decimal). b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean (to 2 decimals).
A simple random sample of 70 items resulted in a sample mean of 60. The population...
A simple random sample of 70 items resulted in a sample mean of 60. The population standard deviation is σ = 15. (a) Compute the 95% confidence interval for the population mean. (Round your answers to two decimal places.) _________ to _________ (b) Assume that the same sample mean was obtained from a sample of 140 items. Provide a 95% confidence interval for the population mean. (Round your answers to two decimal places.) _________ to _________ (c) What is the...
A simple random sample of 60 items resulted in a sample mean of 80. The population...
A simple random sample of 60 items resulted in a sample mean of 80. The population standard deviation is σ = 5. (a) Compute the 95% confidence interval for the population mean. (Round your answers to two decimal places.)   to   (b) Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean. (Round your answers to two decimal places.)   to  
A simple random sample of 60 items resulted in a sample mean of 80. The population...
A simple random sample of 60 items resulted in a sample mean of 80. The population standard deviation is σ = 5. (a) Compute the 95% confidence interval for the population mean. (Round your answers to two decimal places.)   to   (b) Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean. (Round your answers to two decimal places.)   to  
A simple random sample of 60 items resulted in a sample mean of 65. The population...
A simple random sample of 60 items resulted in a sample mean of 65. The population standard deviation is 16. a. Compute the 95% confidence interval for the population mean (to 1 decimal). ( , ) b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean (to 2 decimals). ( , ) c. What is the effect of a larger sample size on the margin of...
A simple random sample of 60 items resulted in a sample mean of 65. The population...
A simple random sample of 60 items resulted in a sample mean of 65. The population standard deviation is 16. a. Compute the 95% confidence interval for the population mean (to 1 decimal). ( , ) b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean (to 2 decimals). ( , ) c. What is the effect of a larger sample size on the margin of...
A simple random sample of 60 items resulted in a sample mean of 95. The population...
A simple random sample of 60 items resulted in a sample mean of 95. The population standard deviation is 13. a. Compute the 95% confidence interval for the population mean (to 1 decimal). (  ,  ) b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean (to 2 decimals). (  ,  ) c. What is the effect of a larger sample size on the margin of error? SelectIt increasesIt decreasesIt...
A simple random sample of 60 items resulted in a sample mean of 10. The population...
A simple random sample of 60 items resulted in a sample mean of 10. The population standard deviation is 20. Compute the 95% confidence interval for the population mean. Round to 1 decimal place. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean. Round to 2 decimal places. What is the effect of a larger sample size on the interval estimate? Larger sample provides a larger...
A simple random sample of 60 items resulted in a sample mean of 89. The population...
A simple random sample of 60 items resulted in a sample mean of 89. The population standard deviation is 18. a. Compute the 95% confidence interval for the population mean (to 1 decimal). ( , ) b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean (to 2 decimals). ( , ) c. What is the effect of the larger sample size on the margin of...
A simple random sample of 60 items resulted in a sample mean of 67. The population...
A simple random sample of 60 items resulted in a sample mean of 67. The population standard deviation is 12. a. Compute the 95% confidence interval for the population mean (to 1 decimal). (  ,  ) b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean (to 2 decimals). (  ,  ) c. What is the effect of a larger sample size on the margin of error?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT