Question

In: Physics

A guy pushes a box of mass 10kg along an inclined plane of 15.0. The coefficient...

A guy pushes a box of mass 10kg along an inclined plane of 15.0. The coefficient of kinetic friction is 0.2. The man gives a force of 50N on the box along the inclined plane and the box goes through a displacement of 2m. Find:

a) the net work done on the box

b) if the guy takes 2 minutes to move the box 2m, then find his power

Solutions

Expert Solution


Related Solutions

A block of mass m = 3.5 kg is on an inclined plane with a coefficient...
A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.23, at an initial height h = 0.46 m above the ground. The plane is inclined at an angle θ = 42°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...
A 10kg box is pulled along a rough surface with force 30N at a 30-degree angle....
A 10kg box is pulled along a rough surface with force 30N at a 30-degree angle. (a) What are the horizontal and vertical components of this applied force? (b) What is the force of gravity on the box? (c) Normal Force? (d) If the coefficient of the kinetic friction is .25, what is the net force and acceleration?
A block is at rest on an inclined plane whose elevation can be varied. The coefficient...
A block is at rest on an inclined plane whose elevation can be varied. The coefficient of static friction is μs= 0.45, and the coefficient of kinetic friction is μk = 0.18. The angle of elevation θ is increased slowly from the horizontal. At what value of θ does the block begin to slide (in degrees)? What is the acceleration of the block?
A brick of mass m is initially at rest at the peak of an inclined plane,...
A brick of mass m is initially at rest at the peak of an inclined plane, which has a height of 6.4 m and has an angle of θ = 18° with respect to the horizontal. After being released, it is found to be moving at v = 0.15 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the brick and the plane is μp = 0.1, and the coefficient...
​The inclined plane and horizontal shown above both have a coefficient of kinetic friction of 0.10.
The inclined plane and horizontal shown above both have a coefficient of kinetic friction of 0.10.  a) If the 8.00 kg mass is suddenly released from rest, find how far the system moves in 3.0 seconds. b) What is the tension in the cable while the masses are sliding?
The diagram shows a mass after it slides down the inclined plane. There is a static...
The diagram shows a mass after it slides down the inclined plane. There is a static friction coefficient of 0.5 and a kinetic friction coefficient of 0.3 between the box and the incline. The angle of the incline is 30 degrees , and the box has a mass of 4 kg . The starting height at the top of the ramp is 0.8 meters (and the distance along the ramp is 1.6 meters ). A) Prove, with numbers, that the...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ?...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ? = 31.2
The initial speed of a 2.17-kg box traveling up a plane inclined 37° to the horizontal...
The initial speed of a 2.17-kg box traveling up a plane inclined 37° to the horizontal is 3.23 m/s. The coefficient of kinetic friction between the box and the plane is 0.30. (a) How far along the incline does the box travel before coming to a stop? m (b) What is its speed when it has traveled half the distance found in Part (a)? m/s
A box of mass m=19.0 kg is pulled up a ramp that is inclined at an...
A box of mass m=19.0 kg is pulled up a ramp that is inclined at an angle θ=15.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is μk=0.295 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of a=3.09 m/s2, calculate the tension FT in the rope. Use g=9.81 m/s2 for the acceleration due to gravity.
A block of mass m1 = 3.54 kg on a frictionless plane inclined at angle θ...
A block of mass m1 = 3.54 kg on a frictionless plane inclined at angle θ = 26.5° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.41 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT