Question

In: Physics

The diagram shows a mass after it slides down the inclined plane. There is a static...

The diagram shows a mass after it slides down the inclined plane. There is a static
friction coefficient of 0.5 and a kinetic friction coefficient of 0.3 between the box
and the incline. The angle of the incline is 30 degrees , and the box has a mass of 4
kg . The starting height at the top of the ramp is 0.8 meters (and the distance along
the ramp is 1.6 meters ).
A) Prove, with numbers, that the box, if let go from rest at the top of the ramp
*will* start to slide down?
B) Calculate the magnitude of the energy “lost” due to the work done by friction
(in Joules).
C) Calculate the speed of the box at the bottom of the ramp (in m/sec).

Solutions

Expert Solution

The solution is given below.


Related Solutions

A block with mass m = 17.2 kg slides down an inclined plane of slope angle...
A block with mass m = 17.2 kg slides down an inclined plane of slope angle 13.8o with a constant velocity. It is then projected up the same plane with an initial speed 4.05 m/s. How far up the incline will the block move before coming to rest?
If a block slides down an inclined plane having friction with a spring attached to the...
If a block slides down an inclined plane having friction with a spring attached to the horizontal plane at the bottom of the plane.Find the coefficine tof kinetic friction. mass of the block is 10 kg and the angle is 30 degrees the spring constant is 500 N/m
8. A cart slides down an inclined plane with the angle of the incline θ starting...
8. A cart slides down an inclined plane with the angle of the incline θ starting from rest. At the moment the cart begins to move, a ball is launched from the cart perpendicularly to the incline. (a) Choosing an x-y-coordinate system with the x-axis along the incline and the origin at the initial location of the cart, derive the equation of the trajectory that the ball assumes from the perspective of this coordinate system. (b) Determine where the maximum...
A block of mass m = 2.1 kg slides down a 36 ° inclined ramp that...
A block of mass m = 2.1 kg slides down a 36 ° inclined ramp that has a height h = 3.1 m. At the bottom, it hits a block of mass M = 7.1 kg that is at rest on a horizontal surface. Assume a smooth transition at the bottom of the ramp. If the collision is elastic and friction can be ignored, determine the distance the mass m will travel up the ramp after the collision.
a block slides down a frictionless inclined plane of height h=1m, making theta with the horizontal....
a block slides down a frictionless inclined plane of height h=1m, making theta with the horizontal. At the bottom of the plane, the block continues to move on a flat surface with a coefficient of friction u = 0.30. How far does the mass move on the flat surface?
does accleration increase down an inclined plane
does accleration increase down an inclined plane
A box of physics books slides down a ramp inclined at an angle of 40 degrees...
A box of physics books slides down a ramp inclined at an angle of 40 degrees to the horizontal. The total length of the ramp is 10m. The coefficient of kinetic friction between the box and the ramp is .2 for the top 8m and zero for the bottom 2m. Upon reaching the bottom of the ramp, a spring bounces the box back upward. (a) Find the distance that the box travels back up the ramp on the return bounce....
A 50 kg crate slides down a ramp that is inclined by 30 degrees from the...
A 50 kg crate slides down a ramp that is inclined by 30 degrees from the horizontal. The acceleration of the crate parallel to the surface of the ramp is 2.0m/s^2, and the length of the ramp is 10m. Determine the kinetic energy accumulated by the crate when it reaches the bottom of the ramp if it started from rest at the top of the incline. Calculate the amount of energy lost by the crate due to friction in its...
A block slides down a frictionless inclined ramp. If the ramp angle is 26° and its...
A block slides down a frictionless inclined ramp. If the ramp angle is 26° and its length is 29 m, find the speed of the block as it reaches the bottom of the ramp, assuming it started sliding from rest at the top.
A block of mass m = 3.5 kg is on an inclined plane with a coefficient...
A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.23, at an initial height h = 0.46 m above the ground. The plane is inclined at an angle θ = 42°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT