Question

In: Physics

A brick of mass m is initially at rest at the peak of an inclined plane,...

A brick of mass m is initially at rest at the peak of an inclined plane, which has a height of 6.4 m and has an angle of θ = 18° with respect to the horizontal. After being released, it is found to be moving at v = 0.15 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the brick and the plane is μp = 0.1, and the coefficient of friction on the horizontal surface is μr = 0.2.

what is the speed of the brick, in m/s, just after it leaves the inclined plane?

Find the distance, d in meters?

Solutions

Expert Solution

Hope it helps...

Please give me a thumbs up...


Related Solutions

A rifle of mass M is initially at rest. A bullet of mass m is fired...
A rifle of mass M is initially at rest. A bullet of mass m is fired from the rifle with a velocity v relative to the ground. Which one of the following expressions gives the velocity of the rifle relative to the ground after the bullet is fired? A) −mv B) mv C) Mv/m D) mv/M
A block of mass m = 3.5 kg is on an inclined plane with a coefficient...
A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.23, at an initial height h = 0.46 m above the ground. The plane is inclined at an angle θ = 42°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...
A box with mass m = 2.2kg on an inclined frictionless surface is released from rest...
A box with mass m = 2.2kg on an inclined frictionless surface is released from rest from a height h = 2.35 m . After reaching the bottom of the incline the box slides with friction (coefficient of kinetic friction = 1.2) along a horizontal surface until coming to a rest after a distance d. 1. Draw a free body diagram for the box while it is on the incline. Clearly label all forces with standard names. 2. Draw a...
A block with mass m = 17.2 kg slides down an inclined plane of slope angle...
A block with mass m = 17.2 kg slides down an inclined plane of slope angle 13.8o with a constant velocity. It is then projected up the same plane with an initial speed 4.05 m/s. How far up the incline will the block move before coming to rest?
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined...
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined at an angle θ = 30◦ above the horizontal. You release the crate and it slides 1.25 m down the ramp before it hits a spring attached to the bottom of the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.500 and the constant of the spring is k = 6000 N/m. What is the net impulse exerted on...
A 25.0-kg crate is initially at rest at the top of a ramp that is inclined...
A 25.0-kg crate is initially at rest at the top of a ramp that is inclined at an angle θ = 30.0 ◦ above the horizontal. You release the crate and it slides 1.25 m down the ramp before it hits a spring attached to the bottom of the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.400 and the constant of the spring is k = 5000 N/m. How far does the crate compress...
"A mass, denoted M, slides downward along a rough plane surface inclined at angle of 25.94...
"A mass, denoted M, slides downward along a rough plane surface inclined at angle of 25.94 in degrees relative to the horizontal. Initially the mass has a speed of 7.51 m/s, before it slides a distance of 1.0 m down the incline. During this sliding, the magnitude of the power associated with the work done by friction is equal to the magnitude of the power associated with the work done by the gravitational force. What is the coefficient of kinetic...
Object 1 is held at rest at the top of a rough inclined plane of length...
Object 1 is held at rest at the top of a rough inclined plane of length ? = 1.5 ? and angle ? = 25∘. When it is released, it moves with an acceleration of 2 ? down the plane. a) Find the coefficient of kinetic friction ?? of the inclined plane. (??) b) Find the speed of Object 1 when it reaches the bottom of the plane. (??) At the bottom of the inclined plane, Object 1 arrives at...
A block is at rest on an inclined plane whose elevation can be varied. The coefficient...
A block is at rest on an inclined plane whose elevation can be varied. The coefficient of static friction is μs= 0.45, and the coefficient of kinetic friction is μk = 0.18. The angle of elevation θ is increased slowly from the horizontal. At what value of θ does the block begin to slide (in degrees)? What is the acceleration of the block?
A. A sphere and a cylinder roll down an inclined plane, started from rest at the...
A. A sphere and a cylinder roll down an inclined plane, started from rest at the same time. They have the same radii, but not the same mass. Does one reach the bottom first? If so, which? Explain your reasoning. B. Two spheres roll down an inclined plane, starting from rest at the same time. Sphere A has radius R and mass m. Sphere 2 has radius 2R and mass m. Does one reach the bottom first? If so, which?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT