Question

In: Physics

On the moon the surface temperature ranges from 378 K during the day to 1.03 x...

On the moon the surface temperature ranges from 378 K during the day to 1.03 x 102 K at night. Convert these temperatures to the Celsius and Fahrenheit scales. (a) 378 K in degrees Celsius; (b) 378 K in degrees Fahrenheit; (c) 1.03 x 102 K in degrees Celsius; (d) 1.03 x 102 K in degrees Fahrenheit.

Solutions

Expert Solution

PART (A): 378 K in degrees Celsius:

PART (B) : 378 K in degrees Fahrenheit:

PART (C): 1.03 x 102 K = 103 K in degrees Celsius:

PART (D) : 1.03 x 102 K = 103 K in degrees Fahrenheit:

==========================================================

(Please rate the answer if you are satisfied. In case of any queries, please reach out to me via comments)


Related Solutions

n = 4.33 mol of Hydrogen gas is initially at T = 378 K temperature and...
n = 4.33 mol of Hydrogen gas is initially at T = 378 K temperature and pi = 2.88
For the thermal radiation from an ideal blackbody radiator with a surface temperature of 2100 K,...
For the thermal radiation from an ideal blackbody radiator with a surface temperature of 2100 K, let Ic represent the intensity per unit wavelength according to the classical expression for the spectral radiancy and Ip represent the corresponding intensity per unit wavelength according to the Planck expression. What is the ratio Ic/Ip for a wavelength of (a) 400 nm (at the blue end of the visible spectrum) and (b) 210 μm (in the far infrared)? (c) Does the classical expression...
Suppose the surface temperature of the Sun was 12,000 K, rather than 6000 K. a) How...
Suppose the surface temperature of the Sun was 12,000 K, rather than 6000 K. a) How much more thermal radiation would the Sun emit? b) What would happen to the Sun's wavelength of peak emission? Do you think it would still be possible to have life on Earth? Explain.
A projectile is launched vertically from the surface of the Moon with an initial speed of...
A projectile is launched vertically from the surface of the Moon with an initial speed of 1290 m/s. At what altitude is the projectile's speed one-fifth its initial value?
If the surface temperature of a blue star is 25000 K, at what wavelength would it...
If the surface temperature of a blue star is 25000 K, at what wavelength would it emit most of its light and which part of the electromagnetic spectrum would that light be? Calculate the surface temperature of an X-ray star which emits at 1nm peak wavelength?
What would the wavelength of maximum be for infrared radiation from the surface of Mercury? ranges...
What would the wavelength of maximum be for infrared radiation from the surface of Mercury? ranges from ____  nm to ____  nm What about for the moon? ranges from _______  nm to _______  nm
a rock returned from the surface of the moon has a ratio of Rb87 to stable...
a rock returned from the surface of the moon has a ratio of Rb87 to stable Sr87 atomos equal to 14.45 assuming that this was all Rb87 upon the formation of the solar system, estimate the age of the solar system. ans key: t= 4.537*109 yr
QUESTION 1 Engineers wish to launch a satellite from the surface of the Moon. What is...
QUESTION 1 Engineers wish to launch a satellite from the surface of the Moon. What is the minimum speed the satellite must have to escape the Moon’s gravity – that is, what is the escape velocity at the surface of the Moon? The Moon has a mass of 7.3x10^22 kg and a radius of 1.7x10^6 m. a. 1700 m/s b. It depends on the mass of the satellite. c. 5.7x10^6 m/s d. 2400 m/s 10 points    QUESTION 2 The...
. How far away (in A.U.) from the star Rigel (surface temperature T=12,000 K, radius R=35...
. How far away (in A.U.) from the star Rigel (surface temperature T=12,000 K, radius R=35 solar radii) would we have to place a perfect copy of the Earth (same albedo, greenhouse, etc…) to reach the same equilibrium temperatures as our Earth.
An iron sphere has a radius of 0.7 meters and its surface temperature is 400 K....
An iron sphere has a radius of 0.7 meters and its surface temperature is 400 K. It is surrounded by air whose temperature is 300 K. The emissivity of iron and air is 0.985. to. Find the heat flux that is emitted by radiation from the iron sphere. b. Find the net flow of heat from the iron sphere.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT