Question

In: Physics

Light of a given wavelength is used to illuminate the surface of a metal, however, no...

Light of a given wavelength is used to illuminate the surface of a metal, however, no photoelectrons are emitted. In order to cause electrons to be ejected from the surface of this metal you should: a. use light of the same frequency but decrease its intensity b. use light of a higher frequency c. use light of the same frequency but increase its intensity d. use light of a longer wavelength

Consider the various frequencies of the three photons emitted from the following three individual electron transitions in the figure below: n=3 to n=2; n=2 to n=1; n=3 to n=1. What energy level does an electron land on when light is emitted that is part of the ultraviolet region?

a. n=2

b. n=3

c. n=1

d. n=4

Which of the following actions will decrease the energy of a photon?

Select one:

a. Decrease its frequency

b. Increase its frequency

c. Decrease its wavelength

d. Increase its speed

Solutions

Expert Solution


Related Solutions

Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that...
Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that are 0.020 mm apart and 1.60 m from a screen. (a) What is the angular position of the second-order minimum (dark spot)? (b) What is the distance on the screen between the central maximum and the second-order minimum? (c) The reason there is a dark spot at this location on the screen is because light from one slit has to travel further than light...
When ultraviolet light with a wavelength of 400 nm falls on acertain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . Part A What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 280 nm falls on the same surface? Use h = 6.63×10−34 J⋅s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts. View Available Hint(s) K0K_0 = eV
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV.What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 310 nm falls on the same surface? Use h = 6.63×10−34 J⋅s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts.
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . A. What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 330 nm falls on the same surface? Use h = 6.63×10−34 J⋅s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts.
When light of wavelength 400 nm is incident on a metal surface, the stopping potential of...
When light of wavelength 400 nm is incident on a metal surface, the stopping potential of the photoelectrons is 0.600 V. a. What is the work function of the metal? b. What is the threshold frequency? c. What is the maximum kinetic energy of the electron?
When light with a wavelength of 247 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 247 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 2.84 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV. What is the maximum kinetic energy Ko of the photoelectrons when light of wavelength 320 nm falls on the same surface? Use h = 6.63
When light with a wavelength of 215 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 215 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.33 × 10 − 19 J. Determine the wavelength of light that should be used to quadruple the maximum kinetic energy of the electrons ejected from this surface.
When light of wavelength 420 nm strikes a metal surface, photoelectrons having a kinetic energy of...
When light of wavelength 420 nm strikes a metal surface, photoelectrons having a kinetic energy of 6.0 x 10-20 J are released. a) What is the energy needed to remove an electron from the metal atom? b) How much total energy would be needed to remove an electron from a mole of these metal atoms? c) How many moles of photons would be required in part (b)?
A 3.00-W beam of light of wavelength 122 nm falls on a metal surface. You observe...
A 3.00-W beam of light of wavelength 122 nm falls on a metal surface. You observe that the maximum kinetic energy of the ejected electrons is 4.20 eV . Assume that each photon in the beam ejects a photoelectron. Part A What is the work function (in electron volts) of this metal? ϕ = ??? eV Part B How many photoelectrons are ejected each second from this metal? N = ??? electrons/s Part C If the power of the light...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT