In: Statistics and Probability
Let W be a random variable that takes values 1 to 6 with equal probability.
a) Write the PMF.
b) Calculate the mean and variance of W and z=10 W.
W be a random variable that takes values 1 to 6 with equal probability
so, each will have probability of 1/6 = 0.1667
a)
so, PMF will be
W | P(W) |
1 | 0.1667 |
2 | 0.1667 |
3 | 0.1667 |
4 | 0.1667 |
5 | 0.1667 |
6 | 0.1667 |
b)
W | P(W) | W*P(W) | W² * P(W) |
1 | 0.1667 | 0.167 | 0.167 |
2 | 0.1667 | 0.333 | 0.667 |
3 | 0.1667 | 0.500 | 1.500 |
4 | 0.1667 | 0.667 | 2.667 |
5 | 0.1667 | 0.833 | 4.167 |
6 | 0.1667 | 1.000 | 6.000 |
P(W) | W*P(W) | W² * P(W) | |
total sum = | 1 | 3.5 | 15.16667 |
mean = E[W] = ΣW*P(W) =
3.5
E [ W² ] = ΣW² * P(W) =
15.1667
variance = E[ W² ] - (E[ W ])² =
2.91667
-----------------------------------------
Z=10W
Z | P(Z) | Z*P(Z) | Z² * P(Z) |
10 | 0.1667 | 1.667 | 16.667 |
20 | 0.1667 | 3.333 | 66.667 |
30 | 0.1667 | 5.000 | 150.000 |
40 | 0.1667 | 6.667 | 266.667 |
50 | 0.1667 | 8.333 | 416.667 |
60 | 0.1667 | 10.000 | 600.000 |
P(Z) | Z*P(Z) | Z² * P(Z) | |
total sum = | 1 | 35 | 1516.667 |
mean = E[Z] = ΣZ*P(Z) =
35
E [ Z² ] = ΣZ² * P(Z) =
1516.666667
variance = E[ Z² ] - (E[ Z ])² =
291.6666667