In: Statistics and Probability
Let W be a random variable that takes values 1 to 6 with equal probability.
a) Write the PMF.
b) Calculate the mean and variance of W and z=10 W.
W be a random variable that takes values 1 to 6 with equal probability
so, each will have probability of 1/6 = 0.1667
a)
so, PMF will be
| W | P(W) | 
| 1 | 0.1667 | 
| 2 | 0.1667 | 
| 3 | 0.1667 | 
| 4 | 0.1667 | 
| 5 | 0.1667 | 
| 6 | 0.1667 | 
b)
| W | P(W) | W*P(W) | W² * P(W) | 
| 1 | 0.1667 | 0.167 | 0.167 | 
| 2 | 0.1667 | 0.333 | 0.667 | 
| 3 | 0.1667 | 0.500 | 1.500 | 
| 4 | 0.1667 | 0.667 | 2.667 | 
| 5 | 0.1667 | 0.833 | 4.167 | 
| 6 | 0.1667 | 1.000 | 6.000 | 
| P(W) | W*P(W) | W² * P(W) | |
| total sum = | 1 | 3.5 | 15.16667 | 
mean = E[W] = ΣW*P(W) =       
    3.5
          
E [ W² ] = ΣW² * P(W) =       
    15.1667
          
variance = E[ W² ] - (E[ W ])² =       
    2.91667
-----------------------------------------
Z=10W
| Z | P(Z) | Z*P(Z) | Z² * P(Z) | 
| 10 | 0.1667 | 1.667 | 16.667 | 
| 20 | 0.1667 | 3.333 | 66.667 | 
| 30 | 0.1667 | 5.000 | 150.000 | 
| 40 | 0.1667 | 6.667 | 266.667 | 
| 50 | 0.1667 | 8.333 | 416.667 | 
| 60 | 0.1667 | 10.000 | 600.000 | 
| P(Z) | Z*P(Z) | Z² * P(Z) | |
| total sum = | 1 | 35 | 1516.667 | 
mean = E[Z] = ΣZ*P(Z) =       
    35
          
E [ Z² ] = ΣZ² * P(Z) =       
    1516.666667
          
variance = E[ Z² ] - (E[ Z ])² =       
    291.6666667