Question

In: Mechanical Engineering

Fluid (air) enters a nozzle at 150 m/s, 26.85 oC, and at a pressure of 200...

Fluid (air) enters a nozzle at 150 m/s, 26.85 oC, and at a pressure of 200 kPa. Assuming isentropic flow, evaluate the temperature and pressure of the fluid at a location where the speed of fluid equals the speed of sound. What is the ratio of the area at this location to the entrance area?

Solutions

Expert Solution

If you like this answer then please give me Upvote..Thank you


Related Solutions

Air enters a compressor at 20 oC and atmospheric pressure, and exits at 200 oC and...
Air enters a compressor at 20 oC and atmospheric pressure, and exits at 200 oC and 0.8 MPa. The output stream flows at a linear velocity of 2 m/s, through an exit diameter of 10 cm. What is the power input to the compressor? (Answer: 16.7 kW)
Air enters a nozzle steadily at 280 kPa and 77°C with a velocity of 70 m/s...
Air enters a nozzle steadily at 280 kPa and 77°C with a velocity of 70 m/s and exits at 85 kPa and 320 m/s. The heat losses from the nozzle to the surrounding medium at 20°C are estimated to be 3.2 kJ/kg. The table for the ideal-gas properties of air is given below. Determine the exit temperature. (Round the final answer to one decimal). The exit temperature is ______K Determine the total entropy change for this process. (Round the final...
Air is flowing in a 1.5 m2 wind tunnel at 200 m/s at a pressure of...
Air is flowing in a 1.5 m2 wind tunnel at 200 m/s at a pressure of 250kPa, and temperature of 20°C at the entrance. Calculate: (i) Mach number (ii) Total Temperature (iii) Total Pressure (iv) Mass flow rate of air.
1.      Air enters a converging-diverging nozzle with a total pressure of 1100 kPa and a total temperature...
1.      Air enters a converging-diverging nozzle with a total pressure of 1100 kPa and a total temperature of 127°C.  The exit area to throat area ratio is 1.8.  The throat area is 5 cm2.  The velocity at the throat is sonic and the diverging section acts as a nozzle.  Determine the following: a.       The mass flow rate b.      The exit pressure and temperature c.       The exit Mach number d.      The exit velocity 2.      The converging-diverging nozzle now has a throat area of 100 mm2 and an exit area of 160...
Air enters a constant diameter pipe at a pressure of 200 kPa. At the exit of...
Air enters a constant diameter pipe at a pressure of 200 kPa. At the exit of the pipe the pressure is 120 kPa, the Mach number is 0.75, and the stagnation temperature is 330°C. Determine the inlet Mach number and the heat transfer per unit mass of air.
choose the best answer: A- An ideal gas enters an adiabatic nozzle at 10 m/s and...
choose the best answer: A- An ideal gas enters an adiabatic nozzle at 10 m/s and exits at 300 m/s. If the incoming specific enthalpy of the gas is 2,111 kJ/kg, what is the exiting specific enthalpy of the gas in kJ/kg? Choices: 1: 2021.1 Kj/Kg , 2: 2200.9 kj/Kg , 3: 92011 Kj/Kg , -2021.2 kj/Kg. B- A material with a specific heat, Cp, of 5 kJ/kg-K passes through an insulated turbine at 4 kg/s. The incoming temperature of...
Air enters a nozzle steadily at P1=650kPa and T1=125°C at a velocity of 12m/s and leaves...
Air enters a nozzle steadily at P1=650kPa and T1=125°C at a velocity of 12m/s and leaves at 150m/s with a pressure of P2=110 kPa and temperature of T2=78°C. If the inlet are of the nozzle is 85cm^2, determine (a) Mass flow rate of air in the nozzle and (b) Exit diameter of nozzle.
Air flows in a converging-diverging nozzle. The nozzle throat area is 50 cm2. The total pressure...
Air flows in a converging-diverging nozzle. The nozzle throat area is 50 cm2. The total pressure at the nozzle inlet is 1 MPa. The total pressure at the nozzle exit is 650 kPa. The Mach number at the nozzle exit is 0.70. Find the nozzle exit area. 51.7 cm2 84.2 cm2 35.6 cm2 54.7 cm2
A compressed air nozzle has a diameter of .250in and line pressure of 109psi. Atmospheric pressure...
A compressed air nozzle has a diameter of .250in and line pressure of 109psi. Atmospheric pressure is 14.7psi. What is the mass flow rate and velocity of the nozzle? If five nozzles are attached to the same air line with 109psi, what will the mass flow rate and velocity be then? Is either flow choked?
Refrigerant 134a enters a well-insulated nozzle at 14 bar, 60°C, with a velocity of 37 m/s...
Refrigerant 134a enters a well-insulated nozzle at 14 bar, 60°C, with a velocity of 37 m/s and exits at 1.2 bar with a velocity of 460 m/s. For steady-state operation, and neglecting potential energy effects, determine the exit temperature, in °C.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT