In: Statistics and Probability
Solution :
Given that,
Point estimate = sample mean = = $ 49000
sample standard deviation = s = $ 12000
sample size = n = 9
Degrees of freedom = df = n - 1 = 9 - 1 = 8
a) At 95% confidence level
= 1 - 95%
=1 - 0.95 =0.05
/2
= 0.025
t/2,df
= t0.025,8 = 2.306
Margin of error = E = t/2,df * (s /n)
= 2.306 * ( 12000/ 9)
Margin of error = E = $ 9224
The 95% confidence interval estimate of the population mean is,
± E
= $ 49000 ± $ 9224
= ( $ 39776, $ 58224 )
We are 95% confidence that the true mean collect income between $ 39776 and $ 58224.
b) At 90% confidence level
= 1 - 90%
=1 - 0.90 =0.10
/2
= 0.05
t/2,df
= t0.05,8 = 1.860
Margin of error = E = t/2,df * (s /n)
= 1.860 * ( 12000/ 9)
Margin of error = E = $ 7440
The 90% confidence interval estimate of the population mean is,
± E
= $ 49000 ± $ 7440
= ( $ 41560, $ 56440 )
We are 90% confidence that the true mean collect income between $ 41560 and $ 56440.
c) At 99% confidence level
= 1 - 99%
=1 - 0.99 =0.01
/2
= 0.005
t/2,df
= t0.005,8 = 3.355
Margin of error = E = t/2,df * (s /n)
= 3.355 * ( 12000/ 9)
Margin of error = E = $ 13420
The 99% confidence interval estimate of the population mean is,
± E
= $ 49000 ± $ 13420
= ( $ 35580, $ 62420 )
We are 99% confidence that the true mean collect income between $ 35580 and $ 62420.