In: Statistics and Probability
1a) Here is a bivariate data set.
| x | y | 
|---|---|
| 26.1 | 41.5 | 
| 26.6 | 46.9 | 
| 37.2 | 44.2 | 
| 37.2 | 46.6 | 
| 34.1 | 44.1 | 
| 33.8 | 38.4 | 
| 39.9 | 30 | 
| 12.4 | 66.8 | 
| 8.1 | 49.6 | 
| 13.4 | 61.6 | 
| 15 | 52.4 | 
| 21.8 | 61.6 | 
| 3.6 | 53.9 | 
| -9.3 | 97.2 | 
| 28.3 | 39.4 | 
| 29.4 | 44.9 | 
| 29.8 | 41.2 | 
Find the correlation coefficient and report it accurate to three
decimal places.
r =
What proportion of the variation in y can be explained by
the variation in the values of x? Report answer as a
percentage accurate to one decimal place.
r² = %
part b)You wish to determine if there is a negative linear
correlation between the two variables at a significance level of
α=0.005α=0.005. You have the following bivariate data
set.
| x | y | 
|---|---|
| 23.3 | 60.3 | 
| 17 | 54.3 | 
| -2.7 | 68.7 | 
| 14.7 | 59.5 | 
| 49.6 | 41.7 | 
| 10.5 | 57.7 | 
| 21.8 | 48.5 | 
| 14.9 | 56.7 | 
| 37.2 | 46.4 | 
| 29.2 | 42.5 | 
| 30.4 | 50.7 | 
| 10.2 | 58.1 | 
What is the correlation coefficient for this data set?
r =
To find the p-value for a correlation coefficient, you need to
convert to a t-score:
t=√r2(n−2)1−r2t=r2(n-2)1-r2
This t-score is from a t-distribution with
n–2 degrees of freedom.
What is the p-value for this correlation coefficient?
p-value =
Your final conclusion is that...
can you please show the work on a ti 84 plus as well please thank you so much
1)
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 387.4 | 860.3 | 2977.457647 | 3706.3 | -2760.22 | 
| mean | 22.79 | 50.61 | SSxx | SSyy | SSxy | 
correlation coefficient ,    r = Sxy/√(Sx.Sy)
=   -0.8309
.........
R² =    (Sxy)²/(Sx.Sy) =    0.6904
69% of the variation in y can be explained by the
variation in the values of x
........
correlation hypothesis test  
   
Ho:   ρ = 0  
Ha:   ρ ╪ 0  
n=   17  
alpha,α =    0.005  
correlation , r=   -0.8309  
t-test statistic = r*√(n-2)/√(1-r²) =   
    -5.783
DF=n-2 =   15  
p-value =    0.0000  
Decison:   p value < α , So, Reject
Ho
...................
2)
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 256.1 | 645.1 | 2122.009167 | 705.6 | -1072.98 | 
| mean | 21.34 | 53.76 | SSxx | SSyy | SSxy | 
correlation coefficient ,    r = Sxy/√(Sx.Sy)
=   -0.8768
correlation hypothesis test      
Ho:   ρ = 0  
Ha:   ρ ╪ 0  
n=   12  
alpha,α =    0.005  
correlation , r=   -0.8768  
t-test statistic = r*√(n-2)/√(1-r²) =   
    -5.767
DF=n-2 =   10  
p-value =    0.0002  
Decison:   p value < α , So, Reject
Ho  
There is sufficient sample evidence to support the claim that there is a statistically significant negative correlation between the two variables.
..................
THANKS
revert back for doubt
please upvote