Question

In: Computer Science

You come across three people. P says, “If Q is lying, then so is R,” Q...

You come across three people. P says, “If Q is lying, then so is R,” Q says, “If R is lying, then so is P,” and R says, “If P is lying, then so is Q.” Who if anyone is telling the truth?

Solutions

Expert Solution

Consider the following cases:
1. All of them are lying. Consider P's statement, which can be restated as "either R is lying or Q is tellling the truth". If P is lying, then the negation of the statement must hold, which by the Demorgan law, is "R is telling the truth and Q is lying". But it was assumed that R is lying, which is a contradiction. Hence this case is not possible.
2. Two of them are lying. Let that be P and Q for now. Then R is telling the truth. Similar to above, the negation of Q's statement is "P is telling the truth and R is lying". But R is telling the truth, hence this is a contradiction. Similar analysis works when P and R, or Q and R are lying. Hence this case is not possible.
3. One of them is lying. Let that be P for now. Then this means Q and R are telling the truth. But as R says "If P is lying, then so is Q", and R is telling the truth, this implies Q is lying as well. But this is a contradiction. Similar analysis works for when the person lying is Q or R. Hence this case is not possible.
4. All of them are telling the truth. This case is possible, as it doesn't contradict anyone's statement.

This means the only case possible is that everyone is telling the truth. Hence the answer is that everyone is telling the truth.

Comment in case of any doubts.


Related Solutions

Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then...
Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then P = Q.
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Normals are drawn at point P,Q,R lying on parabola y2=4x which intersect at (3,0) then area of △PQR is?
Normals are drawn at point P,Q,R lying on parabola y2=4x which intersect at (3,0) then area of △PQR is?
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧...
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧ ((p→(r ∨ q)) ∧ s), Q=p ∨ t
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q)...
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q) → r (b) x ∧ (¬y ↔ z) ⇐⇒ ((x → y) ∨ ¬z) → (x ∧ ¬(y → z)) (c) (x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ⇐⇒ ¬y → (x ↔ z)
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼...
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼ s) is true. What can you conclude about the truth values of the variables p, q, r and s? Explain your reasoning 2.Use the Laws of Logical Equivalence (provided in class and in the textbook page 35 of edition 4 and page 49 of edition 5) to show that: ((∼ (p ∨ ∼ q) ∨ (∼ p ∧ ∼ r)) ∧ s) ≡ ((r...
Suppose S = {p, q, r, s, t, u} and A = {p, q, s, t}...
Suppose S = {p, q, r, s, t, u} and A = {p, q, s, t} and B = {r, s, t, u} are events. x p q r s t u p(x) 0.15 0.25 0.2 0.15 0.1 (a) Determine what must be p(s). (b) Find p(A), p(B) and p(A∩B). (c) Determine whether A and B are independent. Explain. (d) Arer A and B mutually exclusive? Explain. (e) Does this table represent a probability istribution of any random variable? Explain.
Write a C++ program to construct the truth table of P ∨¬(Q ∧ R) If you...
Write a C++ program to construct the truth table of P ∨¬(Q ∧ R) If you could include comments to explain the code that would be much appreciated!!! :) Thank you so much!
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
A list of six positive integers, p, q, r, s, t, u satisfies p < q...
A list of six positive integers, p, q, r, s, t, u satisfies p < q < r < s < t < u. There are exactly 15 pairs of numbers that can be formed by choosing two different numbers from this list. The sums of these 15 pairs of numbers are: 25, 30, 38, 41, 49, 52, 54, 63, 68, 76, 79, 90, 95, 103, 117. Which sum equals r + s?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT