In: Chemistry
Calculate the equilibrium constant for each of the reactions at 25 ∘C .
A.) 2Fe3+(aq)+3Sn(s)→2Fe(s)+3Sn2+(aq)
B.) O2(g)+2H2O(l)+2Cu(s)→4OH−(aq)+2Cu2+(aq)
C.) Br2(l)+2I−(aq)→2Br−(aq)+I2(s)
Calculate the equilibrium constant for each of the reactions at 25 ∘C .
We can always relate the equilibrium constant to cell potentials via Free Energy, dG
the formulas we have:
dG = -n*F*E°cell;
where n = number of electrons being transferred, F = 96500 C/mol, farady consant, E°cell, can be calcualted via E°cell = E°reduction - Eoxidation
Also,
dG = -RT*ln(K);
R = ideal gas constant, 8.314 J/molK, T = temperature, typically 298K, and K the equilibrium constant
so
dG = -RT*ln(K)
dG = -n*F*E°cell
dG1 = dG2
-RT*ln(K) = -n*F*E°cell
solving for K
K = exp(n*F*E°cell/(RT))
K = exp(n*(96500)*E°cell/(8.314*T))
Now, get E°cell, T in abs, and n, number of e-
A.) 2Fe3+(aq)+3Sn(s)→2Fe(s)+3Sn2+(aq)
Fe3+ + 3 e− ⇌ Fe(s) −0.04
Sn2+ + 2 e− ⇌ Sn(s) −0.13
E°Cell = Ereduction - Eoxidation = -0.13 - -0.04 = -0.09 V
Now, substitute
K = exp(n*(96500)*E°cell/(8.314*T))
K = exp(2*(96500)*(-0.09 )/(8.314*298))
K = 0.0009019
B.) O2(g)+2H2O(l)+2Cu(s)→4OH−(aq)+2Cu2+(aq)
O2(g) + 2 H2O + 4 e− ⇌ 4 OH−(aq) +0.401
Cu2+ + 2 e− ⇌ Cu(s) +0.337
n =4
E°cell = Ecathode - EAnode = 0.401 - 0.337 = 0.064 V
K = exp(n*(96500)*E°cell/(8.314*T))
K = exp(4*(96500)*(0.064 )/(8.314*298))
K = 21397.9
C.) Br2(l)+2I−(aq)→2Br−(aq)+I2(s)
Br2(l) + 2 e− ⇌ 2 Br− +1.066
I2(s) + 2 e− ⇌ 2 I− +0.54
E°cell = 1.066-0.54 = 0.526 V
n = 2
K = exp(n*(96500)*E°cell/(8.314*T))
K = exp(2*(96500)*(0.526 )/(8.314*298))
K = 6.2391*10^17