In: Math
A random sample of 23 items is drawn from a population whose standard deviation is unknown. The sample mean is x⎯⎯x¯ = 820 and the sample standard deviation is s = 25. Use Excel to find your answers. |
(a) |
Construct an interval estimate of μ with 99% confidence. (Round your answers to 3 decimal places.) |
The 99% confidence interval is from to |
(b) |
Construct an interval estimate of μ with 99% confidence, assuming that s = 50. (Round your answers to 3 decimal places.) |
The 99% confidence interval is from to |
(c) |
Construct an interval estimate of μ with 99% confidence, assuming that s = 100. (Round your answers to 3 decimal places.) |
The 99% confidence interval is from to |
(d) |
Describe how the confidence interval changes as s increases. |
||||||
|
a)
Level of Significance , α =
0.01
degree of freedom= DF=n-1= 22
't value=' tα/2= 2.8188 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 25.0000 /
√ 23 = 5.2129
margin of error , E=t*SE = 2.8188
* 5.2129 = 14.6938
confidence interval is
Interval Lower Limit = x̅ - E = 820.00
- 14.693782 = 805.3062
Interval Upper Limit = x̅ + E = 820.00
- 14.693782 = 834.6938
99% confidence interval is (
805.306 < µ < 834.694
)
b)
Level of Significance , α =
0.01
degree of freedom= DF=n-1= 22
't value=' tα/2= 2.8188 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 50.0000 /
√ 23 = 10.4257
margin of error , E=t*SE = 2.8188
* 10.4257 = 29.3876
confidence interval is
Interval Lower Limit = x̅ - E = 820.00
- 29.387563 = 790.6124
Interval Upper Limit = x̅ + E = 820.00
- 29.387563 = 849.3876
99% confidence interval is (
790.612 < µ < 849.388
)
c)
Level of Significance , α =
0.01
degree of freedom= DF=n-1= 22
't value=' tα/2= 2.8188 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 100.0000 /
√ 23 = 20.8514
margin of error , E=t*SE = 2.8188
* 20.8514 = 58.7751
confidence interval is
Interval Lower Limit = x̅ - E = 820.00
- 58.775127 = 761.2249
Interval Upper Limit = x̅ + E = 820.00
- 58.775127 = 878.7751
99% confidence interval is (
761.225 < µ < 878.775
)
d)
The interval gets wider as s increases.