Question

In: Computer Science

- You (Eve) have intercepted two ciphertexts: c1 = 1111100101111001110011000001011110000110 c2 = 1111101001100111110111010000100110001000 You know that...

- You (Eve) have intercepted two ciphertexts: c1 = 1111100101111001110011000001011110000110

c2 = 1111101001100111110111010000100110001000

You know that both are OTP ciphertexts, encrypted with the same key. You know that either c1 is an encryption of alpha and c2 is an encryption of bravo or c1 is an encryption
of delta and c2 is an encryption of gamma (all converted to binary from ascii in the standard way). Which of these two possibilities is correct, and why? What was the key k?

Solutions

Expert Solution

The second possibility is correct because after changing from ASCII to binary we get these values.

C1 = 1111100101111001110011000001011110000110 = delta

c2 = 1111101001100111110111010000100110001000 = gamma

c1 =============================================================
Ciphertext (sent the ciphertext to your recipient)
============================================================
75747c7560

============================================================
Hexadecimal
============================================================
64656c7461
1111100101
----------- xor
75747c7560

============================================================
Binary
============================================================
0110010001100101011011000111010001100001
0001000100010001000100000000000100000001


----------------------------------------- xor
0111010101110100011111000111010101100000

c2 =

============================================================
Ciphertext (sent the ciphertext to your recipient)
============================================================
76707d7d60

============================================================
Hexadecimal
============================================================
67616d6d61
1111101001
----------- xor
76707d7d60

============================================================
Binary
============================================================
0110011101100001011011010110110101100001
0001000100010001000100000001000000000001
----------------------------------------- xor
0111011001110000011111010111110101100000


Related Solutions

Two separate capacitors, C1 and C2 C1 = 36 micro-Coulomb on 3 micro-Farad C2 = 72...
Two separate capacitors, C1 and C2 C1 = 36 micro-Coulomb on 3 micro-Farad C2 = 72 uC on X 2uF, , if zero 1 C2 had a gap of 0.2m maintained by a compressed plastic spring inside the gap, the natural spring length was 0.5m, the compressed spring length was 0.2 m. Spring constant = 8,000 micro-Newton/ meter Action: Connected the two capacitors in parallel Part A Find Q2-new, C2-new, new gap, Hint: Capacitance has geometry parameters, build an equation...
Two separate capacitors, C1 and C2 C1 = 36 micro-Coulomb on 3 micro-Farad C2 = 72...
Two separate capacitors, C1 and C2 C1 = 36 micro-Coulomb on 3 micro-Farad C2 = 72 uC on 5 uF C2 had a gap of 0.2m maintained by a compressed plastic spring inside the gap, the natural spring length was 0.5m, the compressed spring length was 0.2 m. Spring constant = 8,000 micro-Newton/ meter Action: Connected the two capacitors in parallel Part A Find Q2-new, C2-new, new gap, Part B Find the initial total energy, the final total energy -use...
You cross the following two individuals: Individual 1: A/a;B/b;C1/C2 Individual 2: a/a;B/b;C1/C2 A is fully dominant,...
You cross the following two individuals: Individual 1: A/a;B/b;C1/C2 Individual 2: a/a;B/b;C1/C2 A is fully dominant, B is dominant lethal, whereas C1 and C2 are incompletely dominant The proportion of offspring that are expected to have the same phenotype as individual 1 is _________
Given a set of samples which belong to two classes C1 and C2, assume C1 and...
Given a set of samples which belong to two classes C1 and C2, assume C1 and C2 are linearly separable, please prove that perceptron learning algorithm applied to the samples will terminate after a finite number of iterations.
Given two circles C1 and C2 in the same plane where C1 has a radius of...
Given two circles C1 and C2 in the same plane where C1 has a radius of a and C2 has a radius of b and the centers of the C1 and C2 have a distance of c apart. In terms of a,b, and c describe when the intersection of C1 and C2 would be zero points. prove this
U(C1, C2, C3, C4, C5) = C1∙C2∙C3∙C4∙C5 As a mathematical function, does U have a maximum...
U(C1, C2, C3, C4, C5) = C1∙C2∙C3∙C4∙C5 As a mathematical function, does U have a maximum or minimum value? What values of Ci correspond to the minimum value of U? What values of Ci correspond to the maximum value of U? Do these values of Ci make sense from an economic standpoint? Now let us connect the idea of economic utility to actual dollar values. To keep the values more manageable, we will use household income rather than the entire...
U(C1, C2, C3, C4, C5) = C1∙C2∙C3∙C4∙C5 As a mathematical function, does U have a maximum...
U(C1, C2, C3, C4, C5) = C1∙C2∙C3∙C4∙C5 As a mathematical function, does U have a maximum or minimum value? What values of Ci correspond to the minimum value of U? What values of Ci correspond to the maximum value of U? Do these values of Ci make sense from an economic standpoint? Now let us connect the idea of economic utility to actual dollar values. To keep the values more manageable, we will use household income rather than the entire...
Calculate the values "c1, c2, c3, c4, c5" with superposition 6(c1) – (c3)=50 -3(c1) + 3(c2)=0...
Calculate the values "c1, c2, c3, c4, c5" with superposition 6(c1) – (c3)=50 -3(c1) + 3(c2)=0 9(c3) – (c2)= 160 -(c2) – 8(c3) – 2(c5) + 11(c4)=60 -3(c1) – (c2) + 4(c5)=10
You have three capacitors: C1 = 1500. μF, C2 = 2400. μF, and C3 = 3600....
You have three capacitors: C1 = 1500. μF, C2 = 2400. μF, and C3 = 3600. μF. Find Ceq for a) all in series b) all in parallel c) c1 and c2 are in parallel and c3 in series with them d) c2 and c3 in parallel and R1 in series with them, e)c1 and c3 in parallel and c2 in series with them. f) For one of the three arrangements where only two of the caps are connected in...
Consider the following 2-period model U(C1,C2) = min{3C1,4C2} C1 + S = Y1 – T1 C2...
Consider the following 2-period model U(C1,C2) = min{3C1,4C2} C1 + S = Y1 – T1 C2 = Y2 – T2 + (1+r)S Where C1 : first period consumption C2 : second period consumption S : first period saving Y1 = 20 : first period income T1 = 5 : first period lump-sum tax Y2 = 50 : second period income T2 = 10 : second period lump-sum tax r = 0.05 : real interest rate Find the optimal saving, S*
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT