Question

In: Advanced Math

Let (X,d) be the Cartesian product of the two metric spaces (X1,d1) and (X2,d2). a) show...

Let (X,d) be the Cartesian product of the two metric spaces (X1,d1) and (X2,d2).

a) show that a sequence {(xn1,xn2)} in X is Cauchy sequence in X if and only if {xn1} is a Cauchy sequence in X1 and {xn2} is a Cauchy in X2.

b) show that X is complete if and only if both X1 and X2​​​​​​​ are complete.

Solutions

Expert Solution


Related Solutions

(Connected Spaces) (a) Let <X, d> be a metric space and E ⊆ X. Show that...
(Connected Spaces) (a) Let <X, d> be a metric space and E ⊆ X. Show that E is connected iff for all p, q ∈ E, there is a connected A ⊆ E with p, q ∈ E. b) Prove that every line segment between two points in R^k is connected, that is Ep,q = {tp + (1 − t)q | t ∈ [0, 1]} for any p not equal to q in R^k. C). Prove that every convex subset...
1.- let(X1, τ1) and (X2, τ2) are two compact topological spaces. Prove that their topological product...
1.- let(X1, τ1) and (X2, τ2) are two compact topological spaces. Prove that their topological product is also compact. 2.- Let f: X - → Y be a continuous transformation, where X is compact and Y is Hausdorff. Show that if f is bijective then f is a homeomorphism.
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is...
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is connected iff for all p, q ∈ E, there is a connected A ⊆ E with p, q ∈ E. b) Prove that every line segment between two points in R^k is connected, that is Ep,q = {tp + (1 − t)q | t ∈ [0, 1]} for any p not equal to q in R^k. C). Prove that every convex subset of R^k...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that T is invertible. b)Find T inverse.
Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic...
Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic to a metric space (Y, dY ) of diameter at most 1.
Problem 16.8 Let X and Y be compact metric spaces and let f: X → Y...
Problem 16.8 Let X and Y be compact metric spaces and let f: X → Y be a continuous onto map with the property that f-1[{y}] is connected for every y∈Y. Show that ifY is connected then so isX.
Suppose (X, dX) and (Y, dY ) are metric spaces. Define d : (X ×Y )×(X...
Suppose (X, dX) and (Y, dY ) are metric spaces. Define d : (X ×Y )×(X × Y ) → R by d((x, y),(a, b)) = dX(x, a) + dY (y, b). Prove d is a metric on X × Y .
1(i) Show, if (X, d) is a metric space, then d∗ : X × X →...
1(i) Show, if (X, d) is a metric space, then d∗ : X × X → [0,∞) defined by d∗(x, y) = d(x, y) /1 + d(x, y) is a metric on X. Feel free to use the fact: if a, b are nonnegative real numbers and a ≤ b, then a/1+a ≤ b/1+b . 1(ii) Suppose A ⊂ B ⊂ R. Show, if A is not empty and B is bounded below, then both inf(A) and inf(B) exist and...
Let x0< x1< x2. Show that there is a unique polynomial P(x) of degree at most...
Let x0< x1< x2. Show that there is a unique polynomial P(x) of degree at most 3 such that P(xj) =f(xj) j= 0,1,2, and P′(x1) =f′(x1) Give an explicit formula for P(x). maybe this is a Hint using the Hermit Polynomial: P(x) = a0 +a1(x-x0)+a2(x-x0)^2+a3(x-x0)^2(x-x1)
Let (X,d) be a metric space. The graph of f : X → R is the...
Let (X,d) be a metric space. The graph of f : X → R is the set {(x, y) E X X Rly = f(x)}. If X is connected and f is continuous, prove that the graph of f is also connected.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT