Question

In: Advanced Math

1.- let(X1, τ1) and (X2, τ2) are two compact topological spaces. Prove that their topological product...

1.- let(X1, τ1) and (X2, τ2) are two compact topological spaces. Prove that their topological product is also compact.
2.- Let f: X - → Y be a continuous transformation, where X is compact and Y is Hausdorff. Show that if f is bijective then f is a homeomorphism.

Solutions

Expert Solution


Related Solutions

Let X, Y be two topological spaces. Prove that if both are T1 or T2 then...
Let X, Y be two topological spaces. Prove that if both are T1 or T2 then X × Y is the same in the product topology. Prove or find a counterexample for T0.
Prove that the product of a finite number of compact spaces is compact.
Prove that the product of a finite number of compact spaces is compact.
Let (X,d) be the Cartesian product of the two metric spaces (X1,d1) and (X2,d2). a) show...
Let (X,d) be the Cartesian product of the two metric spaces (X1,d1) and (X2,d2). a) show that a sequence {(xn1,xn2)} in X is Cauchy sequence in X if and only if {xn1} is a Cauchy sequence in X1 and {xn2} is a Cauchy in X2. b) show that X is complete if and only if both X1 and X2​​​​​​​ are complete.
1. Let ρ: R2 ×R2 →R be given by ρ((x1,y1),(x2,y2)) = |x1 −x2|+|y1 −y2|. (a) Prove...
1. Let ρ: R2 ×R2 →R be given by ρ((x1,y1),(x2,y2)) = |x1 −x2|+|y1 −y2|. (a) Prove that (R2,ρ) is a metric space. (b) In (R2,ρ), sketch the open ball with center (0,0) and radius 1. 2. Let {xn} be a sequence in a metric space (X,ρ). Prove that if xn → a and xn → b for some a,b ∈ X, then a = b. 3. (Optional) Let (C[a,b],ρ) be the metric space discussed in example 10.6 on page 344...
Let f : V mapped to W be a continuous function between two topological spaces V...
Let f : V mapped to W be a continuous function between two topological spaces V and W, so that (by definition) the preimage under f of every open set in W is open in V : Y is open in W implies f^−1(Y ) = {x in V | f(x) in Y } is open in V. Prove that the preimage under f of every closed set in W is closed in V . Feel free to take V...
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove...
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove that U is a subspace of F4. (b) Find a basis for U and prove that dimU = 2. (c) Complete the basis for U in (b) to a basis of F4. (d) Find an explicit isomorphism T : U →F2. (e) Let T as in part (d). Find a linear map S: F4 →F2 such that S(u) = T(u) for all u ∈...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that T is invertible. b)Find T inverse.
Let the utility function be given by u(x1, x2) = √x1 + x2. Let m be...
Let the utility function be given by u(x1, x2) = √x1 + x2. Let m be the income of the consumer, P1 and P2 the prices of good 1 and good 2, respectively. To simplify, normalize the price of good 1, that is P1 = £1. (a) Write down the budget constraint and illustrate the set of feasible bundles using a figure. (b) Suppose that m = £100 and that P2 = £10. Find the optimal bundle for the consumer....
Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼...
Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼ N(0, 1). 1) Let Y1 = X12 + X12 and Y2 = X12− X22 . Find the joint p.d.f. of Y1 and Y2, and the marginal p.d.f. of Y1. Are Y1 and Y2 independent? 2) Let W = √X1X2/(X12 +X22) . Find the p.d.f. of W.
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT