Question

In: Advanced Math

1.- let(X1, τ1) and (X2, τ2) are two compact topological spaces. Prove that their topological product...

1.- let(X1, τ1) and (X2, τ2) are two compact topological spaces. Prove that their topological product is also compact.
2.- Let f: X - → Y be a continuous transformation, where X is compact and Y is Hausdorff. Show that if f is bijective then f is a homeomorphism.

Solutions

Expert Solution


Related Solutions

Let X, Y be two topological spaces. Prove that if both are T1 or T2 then...
Let X, Y be two topological spaces. Prove that if both are T1 or T2 then X × Y is the same in the product topology. Prove or find a counterexample for T0.
Prove that the product of a finite number of compact spaces is compact.
Prove that the product of a finite number of compact spaces is compact.
1. Let ρ: R2 ×R2 →R be given by ρ((x1,y1),(x2,y2)) = |x1 −x2|+|y1 −y2|. (a) Prove...
1. Let ρ: R2 ×R2 →R be given by ρ((x1,y1),(x2,y2)) = |x1 −x2|+|y1 −y2|. (a) Prove that (R2,ρ) is a metric space. (b) In (R2,ρ), sketch the open ball with center (0,0) and radius 1. 2. Let {xn} be a sequence in a metric space (X,ρ). Prove that if xn → a and xn → b for some a,b ∈ X, then a = b. 3. (Optional) Let (C[a,b],ρ) be the metric space discussed in example 10.6 on page 344...
Let f : V mapped to W be a continuous function between two topological spaces V...
Let f : V mapped to W be a continuous function between two topological spaces V and W, so that (by definition) the preimage under f of every open set in W is open in V : Y is open in W implies f^−1(Y ) = {x in V | f(x) in Y } is open in V. Prove that the preimage under f of every closed set in W is closed in V . Feel free to take V...
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove...
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove that U is a subspace of F4. (b) Find a basis for U and prove that dimU = 2. (c) Complete the basis for U in (b) to a basis of F4. (d) Find an explicit isomorphism T : U →F2. (e) Let T as in part (d). Find a linear map S: F4 →F2 such that S(u) = T(u) for all u ∈...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that T is invertible. b)Find T inverse.
Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼...
Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼ N(0, 1). 1) Let Y1 = X12 + X12 and Y2 = X12− X22 . Find the joint p.d.f. of Y1 and Y2, and the marginal p.d.f. of Y1. Are Y1 and Y2 independent? 2) Let W = √X1X2/(X12 +X22) . Find the p.d.f. of W.
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
Prove E(X1 + X2 | Y=y) = E(X1 | Y=y) + E(X2 |Y=y). Prove both cases...
Prove E(X1 + X2 | Y=y) = E(X1 | Y=y) + E(X2 |Y=y). Prove both cases where all random variables are discrete and also when all random variables are continuous.
Problem 16.8 Let X and Y be compact metric spaces and let f: X → Y...
Problem 16.8 Let X and Y be compact metric spaces and let f: X → Y be a continuous onto map with the property that f-1[{y}] is connected for every y∈Y. Show that ifY is connected then so isX.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT